265

266

267

268

270

271

272

273

275

276

277

278

280

Cdédigo fonte em PDF

Collections

Aqui como incluir apenas um trecho do cédigo fonte, especificando linha de inicio

e de fim.

private static <T>

int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)

{

3

Desta vez, inclui o mesmo trecho, e adiciona a numeracao de linhas.

int low =

int high

while (1
int
Comp
int
if (
else
else

}

return -

0;
= list.size()-1;

ow <= high) {
mid = (low + high) >>> 1;

arable<? super T> midVal = list.get(mid);

cmp = midVal.compareTo (key) ;

cmp < 0)
low = mid + 1;
if (cmp > 0)

high = mid - 1;
return mid; // key found

(low + 1); // key not found

private static <T>

int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)

{

int low =

int high

while (1
int
Comp
int
if (
else

else

0;
= list.size()-1;

ow <= high) {
mid = (low + high) >>> 1;

arable<? super T> midVal = list.get(mid);

cmp = midVal.compareTo (key) ;

cmp < 0)

low = mid + 1;
if (cmp > 0)

high = mid - 1;

return mid; // key found

281

282

283

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

}
return -(low + 1); // key not found

LinkedList

Por fim, colocar o arquivo completo é o mais simples. Contudo, é importante
olhar como resolver o caso de linhas muito longas.

N
*

¥ % X X X X ¥ ¥ X X X X X X X ¥ ¥ * * % *x *

Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.

This code is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 only, as
published by the Free Software Foundation. UOracle designates this
particular file as subject to the "Classpath" exception as provided
by Oracle in the LICENSE file that accompanied this code.

Thts code %s distributed in the hope that <t will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy ts included in the LICENSE file that
accompanied this code).

You should have received a copy of the GNU General Public License wversion
2 along with this work; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
or visit www.oracle.com i1f you need additional information or have any
questions.

*/

package java.util;

import java.io.Serializable;
import java.io.ObjectOutputStream;
import java.io.IOException;

import java.lang.reflect.Array;

Jk*

* %X X x %

This class consists exclusively of static methods that operate on or return
collections. It contains polymorphic algorithms that operate on
collections, "wrappers”, which return a new collection backed by a
specified collection, and a few other odds and ends.

38

39

40

41

42

43

44

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

T4

75

76

T

78

79

80

81

82

83

¥ % %X X ¥ %X X X ¥ X X ¥ ¥ X X ¥ * X X ¥ X ¥ ¥ * X ¥ ¥ % X *x *

*
AN

<p>The methods of this class all throw a <tt>NullPointerException</tt>
if the collections or class objects provided to them are null.

<p>The documentation for the polymorphic algorithms contained in this class
generally includes a brief description of the <i>implementation</i>. Such
descriptions should be regarded as <i>implementation notes</i>, rather than
parts of the <i>specification</i>. Implementors should feel free to
substitute other algorithms, so long as the specification itself is adhered
to. (For example, the algorithm used by <tt>sort</tt> does not have to be
a mergesort, but it does have to be <i>stable</i>.)

<p>The "destructive” algorithms contained in this class, that is, the
algorithms that modify the collection on which they operate, are specified
to throw <tt>UnsupportedOperationException</tt> if the collection does not
support the appropriate mutation primitive(s), such as the <tt>set</tt>
method. These algorithms may, but are not required to, throw this
exception if an invocation would have no effect on the collection. For
example, invoking the <tt>sort</tt> method on an unmodifiable list that is
already sorted may or may not throw <tt>UnsupportedOperationException</tt>.

<p>This class is a member of the

Java Collections Framework.

@author Josh Bloch
@author Neal Gafter

O@see Collection
O@see Set
O@see List
Osee Map

@since 1.2

public class Collections {

// Suppresses default constructor, ensuring non-instantiability.
private Collections() {
X

// Algorithms

/*
* Tuning parameters for algorithms - Many of the List algorithms have
* two implementations, one of which ts appropriate for RandomAccess
* lists, the other for "sequential." Often, the random access wvariant
* yields better performance on small sequential access lists. The
* tuning parameters below determine the cutoff point for what constitutes

84

86

87

88

89

90

91

92

93

94

95

96

97

98

* a "small" sequential access list for each algorithm. The values below
* were empirically determined to work well for LinkedList. Hopefully
* they should be reasonable for other sequential access List
* implementations. Those doing performance work on this code would
* do well to walidate the values of these parameters from time to time.
* (The first word of each tuning parameter name %s the algorithm to which
* 4t applies.)
*/

private static final int BINARYSEARCH_THRESHOLD = 5000;

private static final int REVERSE_THRESHOLD 18;

private static final int SHUFFLE_THRESHOLD = 5;

private static final int FILL_THRESHOLD = 25;

private static final int ROTATE_THRESHOLD = 100;

private static final int COPY_THRESHOLD = 10;

private static final int REPLACEALL_THRESHOLD = 11;

private static final int INDEXOFSUBLIST_THRESHOLD = 35;

Vi

¥ ¥ %X X X ¥ X X ¥ X X ¥ ¥ X X ¥ ¥ X X ¥ X X ¥ * X *x * *

interface.

Furthermore,
<i>mutually comparable</i> (that is,
must not throw a {@code ClassCastException} for any elements
{@code el} and {@code e2} in the list).

<p>The specified list must be modifiable,

Sorts the specified list into ascending order,
{@linkplain Comparable natural ordering} of its elements.
All elements in the list must implement the {@link Comparable}
all elements in the list must be
{@code el.compareTo(e2)}

according to the

<p>This sort is guaranteed to be <i>stable</i>:
not be reordered as a result of the sort.

equal elements will

but need not be resizable.

<p>Implementation note: This implementation is a stable, adaptive,

iterative mergesort that requires far fewer than n 1lg(n) comparisons
when the input array is partially sorted,
performance of a traditional mergesort when the input array is
randomly ordered.

while offering the

If the input array is nearly sorted, the

implementation requires approximately n comparisons. Temporary

storage requirements vary from a small constant for nearly sorted
input arrays to n/2 object references for randomly ordered input
arrays.

<p>The implementation takes equal advantage of ascending and
descending order in its input array,
ascending and descending order in different parts of the same
input array.

and can take advantage of

It is well-suited to merging two or more sorted arrays:

simply concatenate the arrays and sort the resulting array.

130

131

132

133

<p>The implementation was adapted from Tim Peters's list sort for Python
(
TimSort). It uses techiques from Peter McIlroy's "Optimistic

Sorting and Information Theoretic Complexity”, in Proceedings of the

Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
January 1995.

<p>This implementation dumps the specified list into an array, sorts
the array, and iterates over the list resetting each element

from the corresponding position in the array. This avoids the
n² log(n) performance that would result from attempting
to sort a linked list in place.

Oparam 1list the list to be sorted.
@throws ClassCastException if the list contains elements that are not
<i>mutually comparable</i> (for example, strings and integers).
Othrows UnsupportedUperationException if the specified list's
list-iterator does not support the {@code set} operation.
Othrows IllegalArgumentException (optional) if the implementation
detects that the natural ordering of the list elements is
found to violate the {@link Comparable} contract

¥ % ¥ X X X X X X ¥ X X ¥ ¥ X X ¥ X X ¥ * *x

*/
public static <T extends Comparable<? super T>> void sort(List<T> list) {
Object[] a = list.toArray();
Arrays.sort(a);
ListIterator<T> i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set((Maljl);

N
*
*

Sorts the specified list according to the order induced by the
specified comparator. All elements in the list must be <i>mutually
comparable</i> using the specified comparator (that is,

{@code c.compare(el, e2)} must not throw a {@code ClassCastException}
for any elements {@code el} and {@code e2} in the list).

<p>This sort is guaranteed to be <i>stable</i>: equal elements will
not be reordered as a result of the sort.

<p>The specified list must be modifiable, but need not be resizable.

* X X X X X X X X X %X %

<p>Implementation note: This implementation is a stable, adaptive,

176

177

178

179

181

182

183

184

199

200

201

202

204

205

206

207

O X K X K X ¥ X ¥ X X %X %

*/

iterative mergesort that requires far fewer than n 1lg(n) comparisons
when the input array is partially sorted, while offering the
performance of a traditional mergesort when the input array is
randomly ordered. If the input array is nearly sorted, the
implementation requires approximately n comparisons. Temporary
storage requirements vary from a small constant for nearly sorted
input arrays to n/2 object references for randomly ordered input
arrays.

<p>The implementation takes equal advantage of ascending and
descending order in its input array, and can take advantage of
ascending and descending order in different parts of the same

input array. It is well-suited to merging two or more sorted arrays:
simply concatenate the arrays and sort the resulting array.

<p>The implementation was adapted from Tim Peters's list sort for Python
(

TimSort). It uses techiques from Peter McIlroy's "Optimistic
Sorting and Information Theoretic Complexity”, in Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
January 1993.

<p>This implementation dumps the specified list into an array, sorts
the array, and iterates over the list resetting each element

from the corresponding position in the array. This avoids the
n² log(n) performance that would result from attempting
to sort a linked list in place.

Oparam 1ist the list to be sorted.

Oparam c¢ the comparator to determine the order of the list. A
{@code null} value indicates that the elements’' <i>natural
ordering</i> should be used.

Othrows ClassCastException if the list contains elements that are not

<i>mutually comparable</i> using the specified comparator.

O@throws UnsupportedUperationException if the specified list's

list-iterator does not support the {@code set} operation.

Othrows IllegalArgumentException (optional) if the comparator is

found to violate the {@link Comparator} contract

public static <T> void sort(List<T> list, Comparator<? super T> c) {

Object[] a = list.toArray();
Arrays.sort(a, (Comparator)c);
ListIterator i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set(aljl);

VLTS

O OX K X K X %X

*/

Searches the specified list for the specified object using the binary
search algorithm. The list must be sorted into ascending order
according to the {@linkplain Comparable natural ordering} of its
elements (as by the {@link #sort(List)} method) prior to making this
call. If it is not sorted, the results are undefined. If the list
contains multiple elements equal to the specified object, there is no
guarantee which one will be found.

<p>This method runs in log(n) time for a "random access” list (which
provides near-constant-time positional access). If the specified list
does not implement the {@link RandomAccess} interface and is large,
this method will do an iterator-based binary search that performs
0(n) link traversals and 0(log n) element comparisons.

Oparam list the list to be searched.

Oparam key the key to be searched for.

Oreturn the index of the search key, if it is contained in the list;
otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
<i>insertion point</i> is defined as the point at which the
key would be inserted into the list: the index of the first
element greater than the key, or <tt>list.size()</tt> if all
elements in the list are less than the specified key. Note
that this guarantees that the return value will be >= 0 if
and only if the key is found.

Othrows ClassCastException if the list contains elements that are not
<i>mutually comparable</i> (for example, strings and
integers), or the search key is not mutually comparable
with the elements of the list.

public static <T>
int binarySearch(List<? extends Comparable<? super T>> list, T key) {

if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
return Collections.indexedBinarySearch(list, key);
else
return Collections.iteratorBinarySearch(1ist, key);

private static <T>
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)

{

int low = O;

int high = list.size()-1;

while (low <= high) {

int mid = (low + high) >>> 1;
Comparable<? super T> midVal = list.get(mid);
int cmp = midVal.compareTo(key);

if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found

return -(low + 1); // key not found

private static <T>
int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)

{

}

Jk*
Gets the ith element from the given list by repositioning the specified
*# list listIterator.

int low = O;
int high = list.size()-1;
ListIterator<? extends Comparable<? super T>> i = list.listIterator();

while (low <= high) {

int mid = (low + high) >>> 1;
Comparable<? super T> midVal = get(i, mid);
int cmp = midVal.compareTo(key);

if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found

return -(low + 1); // key not found

private static <T> T get(ListIterator<? extends T> i, int index) {

T obj = null;
int pos = i.nextIndex();

314

316

317

319

320

321

322

324

325

326

327

329

330

331

332

334

335

337

338

339

340

342

343

344

345

347

348

349

350

Jk*

¥ O X K X K X X K X ¥ X %

*
AN

if (pos

<= index) {

do {

obj = i.next();

} while (pos++ < index);
} else {
do {

obj = i.previous();

} while (--pos > index);

3

return obj;

Searches the specified list for the specified object using the binary
search algorithm. The list must be sorted into ascending order
according to the specified comparator (as by the

{0link #sort(List, Comparator) sort(List, Comparator)}

method), prior to making this call. If it is

not sorted, the results are undefined. If the list contains multiple
elements equal to the specified object, there is no guarantee which one
will be found.

<p>This method runs in log(n) time for a "random access” list (which

provides near-constant-time positional access).

If the specified list

does not implement the {@link RandomAccess} interface and is large,
this method will do an iterator-based binary search that performs
0(n) link traversals and 0(log n) element comparisons.

O@param
O@param
@param

@return

@throws

list the list to be searched.

key the key to be searched for.

¢ the comparator by which the list is ordered.

A <tt>null</tt> value indicates that the elements’
{@linkplain Comparable natural ordering} should be used.

the index of the search key, if it is contained in the list;
otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
<i>insertion point</i> is defined as the point at which the
key would be inserted into the list: the index of the first
element greater than the key, or <tt>list.size()</tt> if all
elements in the list are less than the specified key. Note
that this guarantees that the return value will be >= 0 if
and only if the key is found.

ClassCastException if the list contains elements that are not
<i>mutually comparable</i> using the specified comparator,

or the search key is not mutually comparable with the
elements of the list using this comparator.

360

361

362

363

365

366

367

368

370

371

372

373

375

376

377

378

380

381

383

384

385

386

388

389

390

391

393

394

395

396

398

399

400

401

403

404

405

public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T>
if (c==null)
return binarySearch((List) list, key);

if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
return Collections.indexedBinarySearch(list, key, c);

else
return Collections.iteratorBinarySearch(1ist, key, c);

3

private static <T> int indexedBinarySearch(List<? extends T> 1, T key, Comparator<? supe
int low = O;
int high = 1.size()-1;

while (low <= high) {
int mid (low + high) >>> 1;
T midVal = 1.get(mid);
int cmp = c.compare(midVal, key);

if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found
}

private static <T> int iteratorBinarySearch(List<? extends T> 1, T key, Comparator<? suj
int low = O;
int high = 1.size()-1;
ListIterator<? extends T> i = 1.listIterator();

while (low <= high) {
int mid = (low + high) >>> 1;
T midVal = get(i, mid);
int cmp = c.compare(midVal, key);

if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found

10

406

407

408

409

421

422

423

424

426

427

428

429

430

431

432

433

434

435

436

437

return -(low + 1); // key not found
}

private interface SelfComparable extends Comparable<SelfComparable> {}
Jk*
* Reverses the order of the elements in the specified list. <p>
This method runs in linear time.
Oparam 1ist the list whose elements are to be reversed.

Othrows UnsupportedlUperationException if the specified list or
its list-iterator does not support the <tt>set</tt> operation.

* %X %X % %X %

*/
public static void reverse(List<?> list) {
int size = list.size();
if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
swap(list, i, j);
} else {
ListIterator fwd = list.listIterator();
ListIterator rev = list.listIterator(size);
for (int i=0, mid=list.size()>>1; i<mid; i++) {
Object tmp = fwd.next();
fwd.set(rev.previous());
rev.set (tmp) ;

3

VETS

*# Randomly permutes the specified list using a default source of
randomness. All permutations occur with approximately equal
likelihood. <p>

The hedge "approximately” is used in the foregoing description because
default source of randomness is only approximately an unbiased source
of independently chosen bits. If it were a perfect source of randomly
chosen bits, then the algorithm would choose permutations with perfect
uniformity. <p>

This implementation traverses the list backwards, from the last element
up to the second, repeatedly swapping a randomly selected element into
the "current position”. Elements are randomly selected from the
portion of the list that runs from the first element to the current

* X X X X X X X X X X X %

11

462

463

464

465

467

468

469

470

472

473

474

475

476

477

478

479

480

481

482

483

485

486

487

488

490

491

492

493

495

496

497

¥ X X X X X X X X X %X %

*/

position, inclusive. <p>

This method runs in linear time. If the specified list does not
implement the {@link RandomAccess} interface and is large, this
implementation dumps the specified list into an array before shuffling
it, and dumps the shuffled array back into the list. This avoids the
quadratic behavior that would result from shuffling a "sequential
access” list in place.

Oparam 1list the list to be shuffled.
Othrows UnsupportedUperationException if the specified list or
its list-iterator does not support the <tt>set</tt> operation.

public static void shuffle(List<?> list) {

3

Random rnd = r;
if (rnd == null)

r = rnd = new Random();
shuffle(list, rnd);

private static Random r;

VLS

¥ OX X X X X X X X X X X X X X X X X X %X %

*/

Randomly permute the specified list using the specified source of
randomness. All permutations occur with equal likelihood
assuming that the source of randomness is fair. <p>

This implementation traverses the list backwards, from the last element
up to the second, repeatedly swapping a randomly selected element into
the "current position”. Elements are randomly selected from the
portion of the list that runs from the first element to the current
position, inclusive. <p>

This method runs in linear time. If the specified list does not
implement the {@link RandomAccess} interface and is large, this
implementation dumps the specified list into an array before shuffling
it, and dumps the shuffled array back into the list. This avoids the
quadratic behavior that would result from shuffling a "sequential
access” list in place.

Oparam 1ist the list to be shuffled.

Oparam rnd the source of randomness to use to shuffle the list.

Othrows UnsupportedUperationException if the specified list or its
list-iterator does not support the <tt>set</tt> operation.

public static void shuffle(List<?> list, Random rnd) {

int size = list.size();

12

if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
for (int i=size; i>1; i--)
swap(list, i-1, rnd.nextInt(i));
} else {
Object arr[] = list.toArray(Q);

// Shuffle array
for (int i=size; i>1; i--)
swap(arr, i-1, rnd.nextInt(i));

// Dump array back into list
ListIterator it = list.listIterator();
for (int i=0; i<arr.length; i++) {
it.next();
it.set(arr[il);

ok

Swaps the elements at the specified positions in the specified list.
(If the specified positions are equal, invoking this method leaves
the list unchanged.)

Oparam l1ist The list in which to swap elements.

Oparam i the index of one element to be swapped.

Oparam j the index of the other element to be swapped.

Othrows IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
is out of range (i < 0 // i >= list.size()
[l 3 < 0 || j >= list.size()).

@since 1.4

¥ ¥ %X %X ¥ ¥ %X %X ¥ * *

*/
public static void swap(List<?> list, int i, int j) {
final List 1 = list;
l.set(i, l.set(j, l.get(i)));
}

VLS
* Swaps the two specified elements in the specified array.
*/
private static void swap(Object[] arr, int i, int j) {
Object tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;

13

567

568

569

570

N
*
*

Replaces all of the elements of the specified list with the specified
element. <p>

This method runs in linear time.

Oparam 1ist the list to be filled with the specified element.

Oparam obj The element with which to fill the specified list.

Othrows UnsupportedUperationException if the specified list or its
list-iterator does not support the <tt>set</tt> operation.

* X X X X X X %X %

*/
public static <T> void fill(List<? super T> list, T obj) {
int size = list.size();

if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
for (int i=0; i<size; i++)
list.set(i, obj);
} else {
ListIterator<? super T> itr = list.listIterator();
for (int i=0; i<size; i++) {
itr.next();
itr.set(obj);

N
*
*

Copies all of the elements from one list into another. After the
operation, the index of each copied element in the destination list
will be identical to its index in the source list. The destination
list must be at least as long as the source list. If it is longer, the
remaining elements in the destination list are unaffected. <p>

This method runs in linear time.

Gparam dest The destination list.

Oparam src The source list.

Othrows IndexOutOfBoundsException if the destination list is too small
to contain the entire source List.

O@throws UnsupportedUperationException if the destination list's
list-iterator does not support the <tt>set</tt> operation.

R EEEE "

*/
public static <T> void copy(List<? super T> dest, List<? extends T> src) {
int srcSize = src.size();
if (srcSize > dest.size())
throw new IndexOutOfBoundsException("Source does not fit in dest");

14

600

601

602

603

605

606

607

608

610

611

613

614

615

616

618

619

620

621

623

624

625

626

628

629

630

631

633

634

635

N
*
*

¥ ¥ %X X X ¥ X X ¥ ¥ X ¥ ¥ X X ¥ % % %

*/

if (srcSize < COPY_THRESHOLD ||
(src instanceof RandomAccess && dest instanceof RandomAccess)) {
for (int i=0; i<srcSize; i++)
dest.set(i, src.get(i));
} else {
ListIterator<? super T> di=dest.listIterator();
ListIterator<? extends T> si=src.listIterator();
for (int i=0; i<srcSize; i++) {
di.next();
di.set(si.next());

Returns the minimum element of the given collection, according to the
<i>natural ordering</i> of its elements. All elements in the
collection must implement the <tt>Comparable</tt> interface.
Furthermore, all elements in the collection must be <i>mutually
comparable</i> (that is, <tt>el. compareTo (e2)</tt> must not throw a
<tt>ClassCastException</tt> for any elements <tt>el</tt> and
<tt>e2</tt> in the collection).<p>

This method iterates over the entire collection, hence it requires
time proportional to the size of the collection.

Oparam coll the collection whose minimum element is to be determined.

Oreturn the minimum element of the given collection, according
to the <i>natural ordering</i> of its elements.

@throws ClassCastException if the collection contains elements that are
not <i>mutually comparable</i> (for example, strings and
integers).

Othrows NoSuchElementException if the collection is empty.

Osee Comparable

public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> «

Iterator<? extends T> i = coll.iterator();
T candidate = i.next();

while (i.hasNext()) {
T next = i.next();
if (next.compareTo(candidate) < 0)
candidate = next;
}

return candidate;

15

636

637

638

639

641

642

643

644

646

647

648

649

664

665

666

667

669

670

671

672

674

675

676

677

679

680

681

/K

¥ % X X X ¥ X X ¥ ¥ X X ¥ X X ¥ ¥ X *x *

*/

public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {

Jk*

* % X % %X %

Returns the minimum element of the given collection, according to the
order induced by the specified comparator. All elements in the
collection must be <i>mutually comparable</i> by the specified
comparator (that is, <tt>comp.compare(el, e2)</tt> must not throw a
<tt>ClassCastException</tt> for any elements <tt>el</tt> and
<tt>e2</tt> in the collection). <p>

This method iterates over the entire collection, hence it requires
time proportional to the size of the collection.

Oparam coll the collection whose minimum element is to be determined.

Oparam comp the comparator with which to determine the minimum element.
A <tt>null</tt> value indicates that the elements’' <i>natural
ordering</i> should be used.

Oreturn the minimum element of the given collection, according
to the specified comparator.

@throws ClassCastException if the collection contains elements that are
not <i>mutually comparable</i> using the specified comparator.

Othrows NoSuchElementException 1if the collection is empty.

Osee Comparable

if (comp==null)
return (T)min((Collection<SelfComparable>) (Collection) coll);

Iterator<? extends T> i = coll.iterator();
T candidate = i.next();

while (i.hasNext()) {
T next = i.next();
if (comp.compare(next, candidate) < 0)
candidate = next;
}

return candidate;

Returns the maximum element of the given collection, according to the
<i>natural ordering</i> of its elements. All elements in the
collection must implement the <tt>Comparable</tt> interface.
Furthermore, all elements in the collection must be <i>mutually
comparable</i> (that is, <tt>el. compareTo (e2)</tt> must not throw a
<tt>ClassCastException</tt> for any elements <tt>el</tt> and

16

682

683

684

685

687

688

689

690

692

693

694

695

697

698

699

700

702

703

704

706

707

708

709

710

711

712

713

714

715

716

717

718

720

721

722

723

725

726

727

¥ X X X X X X X X X X X %

*/

public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> ¢

N
*
*

¥ X X X X X X X X X X X X X X X X X %

<tt>e2<

This me
time pr

@param
Q@return

@throws

@throws

/tt> in the collection). <p>

thod iterates over the entire collection, hence it requires
oportional to the size of the collection.

coll the collection whose maximum element is to be determined.
the maximum element of the given collection, according

to the <i>natural ordering</i> of its elements.
ClassCastException if the collection contains elements that are
not <i>mutually comparable</i> (for example, strings and
integers).

NoSuchElementException if the collection is empty.

Osee Comparable

Iterator<? extends T> i = coll.iterator();
T candidate = i.next();

while (i.hasNext()) {
T next = i.next();

if

}

return

Returns

(next.compareTo(candidate) > 0)
candidate = next;

candidate;

the maximum element of the given collection, according to the

order induced by the specified comparator. All elements in the

collect
compara
<tt>Cla
<tt>e2<

This me
time pr

O@param
O@param
@return
Q@throws

@throws

ion must be <i>mutually comparable</i> by the specified

tor (that is, <tt>comp. compare(el, e2)</tt> must not throw a
ssCastException</tt> for any elements <tt>el</tt> and

/tt> in the collection). <p>

thod iterates over the entire collection, hence it requires
oportional to the size of the collection.

coll the collection whose maximum element is to be determined.
comp the comparator with which to determine the maximum element.
A <tt>null</tt> value indicates that the elements’ <i>natural
ordering</i> should be used.

the maximum element of the given collection, according

to the specified comparator.

ClassCastException if the collection contains elements that are
not <i>mutually comparable</i> using the specified comparator.
NoSuchElementException if the collection is empty.

17

728

729

730

731

733

734

735

736

738

739

740

741

743

744

745

746

752

753

754

755

759

760

761

762

763

764

766

767

768

769

771

772

773

@see Comparable

*/

public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp)

if (comp==null)
return (T)max((Collection<SelfComparable>) (Collection) coll);

Iterator<? extends T> i = coll.iterator();
T candidate = i.next();

while (i.hasNext()) {
T next = i.next();
if (comp.compare(next, candidate) > 0)
candidate = next;
}

return candidate;

Jk*

Rotates the elements in the specified list by the specified distance.
After calling this method, the element at index <tt>i</tt> will be

the element previously at index <tt>(i - distance)</tt> mod
<tt>list. size () </tt>, for all values of <tt>i</tt> between <tt>0</tt>
and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
the size of the list.)

<p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s/</tt>.
After invoking <tt>Collections. rotate(list, 1)</tt> (or
<tt>Collections. rotate (list, -4)</tt>), <tt>list</tt> will comprise
<tt>/s, t, a, n, k/</tt>.

<p>Note that this method can usefully be applied to sublists to
move one or more elements within a list while preserving the
order of the remaining elements. For example, the following idiom
moves the element at index <tt>j</tt> forward to position
<tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
<pre>

Collections. rotate (list. subList (j, k+1), -1);
</pre>
To make this concrete, suppose <tt>list</tt> comprises
<tt>/a, b, ¢, d, e/</tt>. To move the element at index <tt>1</tt>
(<tt>b</tt>) forward two positions, perform the following invocation:
<pre>

Collections. rotate (1. subList (1, 4), -1);
</pre>
The resulting list is <tt>/a, c, d, b, e]/</tt>.

XX X K X %

18

774

775

776

7T

779

780

781

782

784

785

786

787

789

790

791

792

794

795

796

797

798

799

800

802

803

804

805

807

808

809

810

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

<p>To move more than one element forward, increase the absolute value
of the rotation distance. To move elements backward, use a positive
shift distance.

<p>If the specified list is small or implements the {@link
RandomAccess} interface, this implementation exchanges the first
element into the location it should go, and then repeatedly exchanges
the displaced element into the location it should go until a displaced
element is swapped into the first element. If necessary, the process
is repeated on the second and successive elements, until the rotation
is complete. If the specified list is large and doesn't implement the
<tt>RandomAccess</tt> interface, this implementation breaks the

list into two sublist views around index <tt>-distance mod size</tt>.
Then the {@link #reverse(List)} method is invoked on each sublist view,
and finally it is invoked on the entire list. For a more complete
description of both algorithms, see Section 2.3 of Jon Bentley's
<i>Programming Pearls</i> (Addison-Wesley, 1986).

Oparam l1ist the list to be rotated.

Oparam distance the distance to rotate the list. There are no
constraints on this value,; it may be zero, negative, or
greater than <tt>list.size () </tt>.

Othrows UnsupportedUperationException if the specified list or

its list-iterator does not support the <tt>set</tt> operation.
O@since 1.4

public static void rotate(List<?> list, int distance) {

}

if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
rotatel(list, distance);

else
rotate2(list, distance);

private static <T> void rotatel(List<T> list, int distance) {

int size = list.size();
if (size == 0)
return;
distance = distance ¥ size;
if (distance < 0)
distance += size;
if (distance == 0)
return;

for (int cycleStart = 0, nMoved = 0O; nMoved != size; cycleStart++) {

T displaced = list.get(cycleStart);
int i = cycleStart;

19

820

821

822

823

825

826

827

828

830

831

832

833

835

836

837

838

840

841

843

844

845

846

848

849

850

851

863

864

865

3

do {
i += distance;
if (i >= size)
i -= size;
displaced = list.set(i, displaced);
nMoved ++;
} while (i != cycleStart);

private static void rotate2(List<?> list, int distance) {

J/k*

¥ ¥ %X X ¥ X X X ¥ X X ¥ % X *x *

*/

int size = list.size();
if (size == 0)

return;
int mid = -distance % size;
if (mid < 0)

mid += size;
if (mid == 0)
return;

reverse(list.subList (0, mid));
reverse(list.subList(mid, size));
reverse(list);

Replaces all occurrences of one specified value in a list with another.
More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
in <tt>list</tt> such that

<tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.

(This method has no effect on the size of the list.)

Oparam list the list in which replacement is to occur.
Oparam oldVal the old value to be replaced.
Oparam newVal the new value with which <tt>oldVal</tt> is to be
replaced.
Oreturn <tt>true</tt> if <tt>list</tt> contained one or more elements
<tt>e</tt> such that
<tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
Othrows UnsupportedlUperationException if the specified list or
its list-iterator does not support the <tt>set</tt> operation.
@since 1.4

public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {

boolean result = false;
int size = list.size();

20

866

867

868

869

VLS

* X X % X % %X %

if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
if (oldVal==null) {
for (int i=0; i<size; i++) {
if (list.get(i)==null) A{
list.set(i, newVal);
result = true;

}
} else {
for (int i=0; i<size; i++) {
if (oldVal.equals(list.get(i))) {
list.set(i, newVal);
result = true;

}
} else {
ListIterator<T> itr=list.listIterator();
if (oldVal==null) {
for (int i=0; i<size; i++) {
if (itr.next()==null) {
itr.set(newVal);
result = true;

}
} else {
for (int i=0; i<size; i++) {
if (oldVal.equals(itr.next())) {
itr.set(newVal);
result = true;

}

return result;

Returns the starting position of the first occurrence of the specified
target list within the specified source list, or -1 if there is no
such occurrence. More formally, returns the lowest index <tt>i</tt>
such that <tt>source. subList (i, i+target.size()). equals (target)</tt>,
or -1 if there is no such index. (Returns -7 if

<tt>target.size() > source.size()</tt>.)

<p>This implementation uses the "brute force” technique of scanning

21

922

923

924

925

927

928

929

930

932

933

935

936

937

938

940

941

942

943

945

946

947

948

*
*
*
*
*
*
*
*
*
*

*/

over the source list, looking for a match with the target at each
location in turn.

Oparam source the list in which to search for the first occurrence
of <tt>target</tt>.
Oparam target the list to search for as a subList of <tt>source</tt>.
Oreturn the starting position of the first occurrence of the specified
target list within the specified source list, or -1 if there
is no such occurrence.

@since 1.4

public static int index0fSubList(List<?> source, List<?> target) {
int sourceSize = source.size();

int targetSize = target.size();

int maxCandidate = sourceSize - targetSize;

}

Jk*

if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
(source instanceof RandomAccess&&target instanceof RandomAccess)) {

nextCand:

for (int candidate = 0; candidate <= maxCandidate; candidate++) {
for (int i=0, j=candidate; i<targetSize; i++, j++)

if (leq(target.get(i), source.get(j)))
continue nextCand; // Element mismatch, try next cand

return candidate; // All elements of candidate matched target

}

} else { // Iterator version of above algorithm
ListIterator<?> si = source.listIterator();

nextCand:

for (int candidate = 0; candidate <= maxCandidate; candidate++) {
ListIterator<?> ti = target.listIterator();
for (int i=0; i<targetSize; i++) {

}

if (leq(ti.next(), si.next())) {
// Back up source iterator to next candidate
for (int j=0; j<i; j++)
si.previous();
continue nextCand;

return candidate;

3

return -1;

// No candidate matched the target

*# Returns the starting position of the last occurrence of the specified

22

963

964

965

966

968

969

970

971

973

974

975

976

978

979

981

982

983

984

986

987

988

989

991

992

993

994

996

997

998

999

1000

1001

1002

1003

target list within the specified source list, or -7 if there is no such
occurrence. More formally, returns the highest index <tt>i</tt>

such that <tt>source. subList (i, i+target.size()).equals (target)</tt>,
or -1 if there is no such index. (Returns -7 if

<tt>target.size () > source.size()</tt>.)

<p>This implementation uses the "brute force” technique of iterating
over the source list, looking for a match with the target at each
location in turn.

Oparam source the list in which to search for the last occurrence
of <tt>target</tt>.
Oparam target the list to search for as a subList of <tt>source</tt>.
Oreturn the starting position of the last occurrence of the specified
target list within the specified source list, or -7 if there
is no such occurrence.
O@since 1.4

¥ X X X X X X X X X X X X X X %X %

*/
public static int lastIndexOfSubList(List<?> source, List<?> target) {
int sourceSize = source.size();
int targetSize = target.size();
int maxCandidate = sourceSize - targetSize;

if (sourceSize < INDEXOFSUBLIST_THRESHOLD | |
source instanceof RandomAccess) { // Index access wversion
nextCand:
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
for (int i=0, j=candidate; i<targetSize; i++, j++)
if (leq(target.get(i), source.get(j)))
continue nextCand; // Element mismatch, try next cand
return candidate; // All elements of candidate matched target
}
} else { // Iterator version of above algorithm
if (maxCandidate < 0)
return -1;

ListIterator<?> si = source.listIterator(maxCandidate);
nextCand:
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
ListIterator<?> ti = target.listIterator();
for (int i=0; i<targetSize; i++) {
if (leq(ti.next(), si.next())) {
if (candidate != 0) {
// Back up source iterator to next candidate
for (int j=0; j<=i+1l; j++)
si.previous();

23

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

continue nextCand;

}

return candidate;

}
return -1; // No candidate matched the target

// Unmodifiable Wrappers

J**
* Returns an unmodifiable view of the specified collection. This method
allows modules to provide users with "read-only” access to internal
collections. Query operations on the returned collection "read through”
*# to the specified collection, and attempts to modify the returned
* collection, whether direct or via its iterator, result in an
<tt>UnsupportedOperationException</tt>. <p>
*
The returned collection does <i>not</i> pass the hashCode and equals
*# operations through to the backing collection, but relies on
* <tt>0bject</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
* is necessary to preserve the contracts of these operations in the case
* that the backing collection is a set or a list.<p>
*
The returned collection will be serializable if the specified collection
*# 1is serializable.
*
@param ¢ the collection for which an unmodifiable view is to be
* returned.
*

Oreturn an unmodifiable view of the specified collection.

*/
public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
return new UnmodifiableCollection<>(c);

}
J**
@serial include
*/
static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
private static final long serialVersionUID = 1820017752578914078L;

final Collection<? extends E> c;

UnmodifiableCollection(Collection<? extends E> c) {

24

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

if (c==null)
throw new NullPointerException();
this.c = c;

}

public int size() {return c.size();}
public boolean isEmpty() {return c.isEmpty(Q);}
public boolean contains(Object o) {return c.contains(o);}
public Object[] toArray() {return c.toArray(Q);}
public <T> T[] toArray(T[] a) {return c.toArray(a);}
public String toString() {return c.toString();?}

public Iterator<E> iterator() {
return new Iterator<E>() {
private final Iterator<? extends E> i = c.iterator();

public boolean hasNext() {return i.hasNext();}
public E next() {return i.next();}
public void remove() {
throw new UnsupportedOperationException();
}
};
}

public boolean add(E e) {

throw new UnsupportedOperationException();
}
public boolean remove(Object o) {

throw new UnsupportedOperationException();

3

public boolean containsAll(Collection<?> coll) {
return c.containsAll(coll);

¥
public boolean addAll(Collection<? extends E> coll) {
throw new UnsupportedOperationException();

X
public boolean removeAll(Collection<?> coll) {
throw new UnsupportedOperationException();

}
public boolean retainAll(Collection<?> coll) {
throw new UnsupportedOperationException();
}
public void clear() {
throw new UnsupportedOperationException();

3

25

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

/K
Returns an unmodifiable view of the specified set. This method allows
modules to provide users with "read-only” access to internal sets.

Query operations on the returned set "read through” to the specified

iterator, result in an <tt>UnsupportedOperationException</tt>. <p>

The returned set will be serializable if the specified set
is serializable.

Oparam s the set for which an unmodifiable view is to be returned.
Oreturn an unmodifiable view of the specified set.

* X X X X X X X X X %

*/
public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
return new UnmodifiableSet<>(s);

3

ok
@serial include
*/
static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
implements Set<E>, Serializable {
private static final long serialVersionUID = -9215047833775013803L;

UnmodifiableSet (Set<? extends E> s) {super(s);}
public boolean equals(Object o) {return o == this || c.equals(o);}
public int hashCode() {return c.hashCode();}
X
VETS
*# Returns an unmodifiable view of the specified sorted set. This method
* allows modules to provide users with "read-only” access to internal
* sorted sets. Query operations on the returned sorted set "read
*# through” to the specified sorted set. Attempts to modify the returned
* gorted set, whether direct, via its iterator, or via its
* <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
an <tt>UnsupportedOperationException</tt>. <p>
*
The returned sorted set will be serializable if the specified sorted set
is serializable.
*
Oparam s the sorted set for which an unmodifiable view is to be
* returned.
@return an unmodifiable view of the specified sorted set.

26

set, and attempts to modify the returned set, whether direct or via its

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

*/
public static <T> SortedSet<T> unmodifiableSortedSet (SortedSet<T> s) {
return new UnmodifiableSortedSet<>(s);

}

VLS
#* @serial include
*/
static class UnmodifiableSortedSet<E>
extends UnmodifiableSet<E>
implements SortedSet<E>, Serializable {
private static final long serialVersionUID = -4929149591599911165L;
private final SortedSet<E> ss;

UnmodifiableSortedSet (SortedSet<E> s) {super(s); ss = s;}
public Comparator<? super E> comparator() {return ss.comparator();}

public SortedSet<E> subSet(E fromElement, E toElement) {

return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));

}
public SortedSet<E> headSet(E toElement) {
return new UnmodifiableSortedSet<>(ss.headSet (toElement));
}
public SortedSet<E> tailSet(E fromElement) {
return new UnmodifiableSortedSet<>(ss.tailSet(fromElement)) ;

X
public E first() {return ss.first();}
public E last() {return ss.last();}
3
J**
Returns an unmodifiable view of the specified list. This method allows
*# modules to provide users with "read-only” access to internal
lists. (Query operations on the returned list "read through” to the
specified list, and attempts to modify the returned list, whether
* direct or via its iterator, result in an
<tt>UnsupportedOperationException</tt>. <p>
*
The returned list will be serializable if the specified list
is serializable. Similarly, the returned list will implement
{0link RandomAccess} if the specified list does.
*
@param list the list for which an unmodifiable view is to be returned.
@return an unmodifiable view of the specified list.

27

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

*/
public static <T> List<T> unmodifiableList(List<? extends T> list) {
return (list instanceof RandomAccess ?
new UnmodifiableRandomAccessList<>(list)
new UnmodifiableList<>(list));

}

Jk*
@serial include
*/
static class UnmodifiableList<E> extends UnmodifiableCollection<E>
implements List<E> {
private static final long serialVersionUID = -283967356065247728L;
final List<? extends E> list;

UnmodifiableList(List<? extends E> list) {
super (list);
this.list = list;

}

public boolean equals(Object o) {return o == this || list.equals(o);}
public int hashCode () {return list.hashCode();}

public E get(int index) {return list.get(index);}
public E set(int index, E element) {
throw new UnsupportedOperationException();
}
public void add(int index, E element) {
throw new UnsupportedOperationException();
}
public E remove(int index) {
throw new UnsupportedOperationException();

}
public int indexOf (Object o) {return list.index0f (o) ;}
public int lastIndexOf(Object o) {return list.lastIndex0f(o);}

public boolean addAll(int index, Collection<? extends E> c) {
throw new UnsupportedOperationException();

}
public ListIterator<E> listIterator() {return listIterator(0);}

public ListIterator<E> listIterator(final int index) {
return new ListIterator<E>() {
private final ListIterator<? extends E> i

= list.listIterator(index);

public boolean hasNext() {return i.hasNext();}

28

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

public E next() {return i.next();}

public boolean hasPrevious() {return i.hasPrevious();}
public E previous() {return i.previous(Q);}
public int nextIndex() {return i.nextIndex();}
public int previousIndex() {return i.previousIndex();}

public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) {
throw new UnsupportedOperationException();
}
s
}

public List<E> subList(int fromIndex, int toIndex) {
return new UnmodifiableList<>(list.subList(fromIndex, tolIndex));

}

Jk*

UnmodifiableRandomAccessList instances are serialized as
UnmodifiablelList instances to allow them to be deserialized

in pre-7./ JREs (which do not have UnmodifiableRandomAccessList).
This method inverts the transformation. As a beneficial
side-effect, it also grafts the RandomAccess marker onto
UnmodifiableList instances that were serialized in pre-7./ JREs.

Note: Unfortunately, UnmodifiableRandomAccessList instances
serialized in 7.4.1 and deserialized in 7./ will become
UnmodifiablelList instances, as this method was missing in 7.4.

¥ K K X X X X X X %

*/
private Object readResolve() {
return (list instanceof RandomAccess
? new UnmodifiableRandomAccessList<>(1list)

: this);
}
}
k%
#* @serial include
*/

static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
implements RandomAccess

29

1280 {

1281 UnmodifiableRandomAccessList (List<? extends E> list) {

1282 super(list);

1283 }

1284

1285 public List<E> subList(int fromIndex, int toIndex) {

1286 return new UnmodifiableRandomAccessList<>(

1287 list.subList (fromIndex, tolIndex));

1288 }

1289

1200 private static final long serialVersionUID = -2542308836966382001L;
1291

1292 /**

1203 # Allows instances to be deserialized in pre-7./ JREs (which do
1204 # not have UnmodifiableRandomAccessList). UnmodifiableList has
1205 # a readResolve method that inverts this transformation upon

1206 * deserialization.

1297 */

1298 private Object writeReplace() {

1299 return new UnmodifiableList<>(list);

1300 }

1301 }

1302

1303 [k

1304 * Returns an unmodifiable view of the specified map. This method

1305 # allows modules to provide users with "read-only” access to internal
1306 # maps. Query operations on the returned map "read through’

1307 *# to the specified map, and attempts to modify the returned

1308 *# map, whether direct or via its collection views, result in an

1309 # <tt>UnsupportedOperationException</tt>. <p>

1310 *

1311 # The returned map will be serializable if the specified map

1312 *# 1is serializable.

1313 *

1314 *# @param m the map for which an unmodifiable view is to be returned.
1315 # @return an unmodifiable view of the specified map.

1316 */

1317 public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, 7 extends V> m) {
1318 return new UnmodifiableMap<>(m) ;

1319 }

1320

1321 /**

1322 # @serial include

1323 */

1324 private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1325 private static final long serialVersionUID = -1034234728574286014L;

30

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

private final Map<? extends K, 7 extends V> m;

UnmodifiableMap(Map<? extends K, 7 extends V> m) {
if (m==null)
throw new NullPointerException();
this.m = m;

public int size() {return m.size(Q);}

public boolean isEmpty() {return m.isEmpty();}

public boolean containsKey(Object key) {return m.containsKey(key);}
public boolean containsValue(Object val) {return m.containsValue(val);}
public V get(Object key) {return m.get (key);}

public V put(K key, V value) {
throw new UnsupportedOperationException();
3
public V remove(Object key) {
throw new UnsupportedOperationException();
X
public void putAll(Map<? extends K, 7 extends V> m) {
throw new UnsupportedOperationException();
X
public void clear() {
throw new UnsupportedOperationException();

}

private transient Set<K> keySet = null;
private transient Set<Map.Entry<K,V>> entrySet = null;
private transient Collection<V> values = null;

public Set<K> keySet() {
if (keySet==null)
keySet = unmodifiableSet(m.keySet());
return keySet;

}

public Set<Map.Entry<K,V>> entrySet() {
if (entrySet==null)
entrySet = new UnmodifiableEntrySet<>(m.entrySet());
return entrySet;

}

public Collection<V> values() {
if (values==null)

31

1372 values = unmodifiableCollection(m.values());

1373 return values;

1374 }

1375

1376 public boolean equals(Object o) {return o == this || m.equals(o);}
1377 public int hashCode () {return m.hashCode();}

1378 public String toString() {return m.toString();3}

1379

1380 /¥

1381 # We need this class in addition to UnmodifiableSet as

1382 # Map. Entries themselves permit modification of the backing Map
1383 # via their setValue operation. This class is subtle: there are
1384 *# many possible attacks that must be thwarted.

1385 *

1386 # @serial include

1387 */

1388 static class UnmodifiableEntrySet<K,V>

1389 extends UnmodifiableSet<Map.Entry<K,V>> {

1390 private static final long serialVersionUID = 7854390611657943733L;
1391

1392 UnmodifiableEntrySet (Set<? extends Map.Entry<? extends K, 7 extends V>> s) {
1393 super ((Set)s);

1394 }

1395 public Iterator<Map.Entry<K,V>> iterator() {

1396 return new Iterator<Map.Entry<K,V>>() {

1397 private final Iterator<? extends Map.Entry<? extends K, 7 extends V>> i
1398

1399 public boolean hasNext() {

1400 return i.hasNext();

1401 }

1402 public Map.Entry<K,V> next() {

1403 return new UnmodifiableEntry<>(i.next());

1404 }

1405 public void remove() {

1406 throw new UnsupportedOperationException() ;

1407 }

1408 };

1409 }

1410

1411 public Object[] toArray() {

1412 Object[] a = c.toArray(;

1413 for (int i=0; i<a.length; i++)

1414 al[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)al[il);
1415 return a;

1416 }

1417

32

1418 public <T> T[] toArray(T[] a) {

1419 // We don't pass a to c.toArray, to avoid window of

1420 // vulnerability wherein an unscrupulous multithreaded client
1421 // could get his hands on raw (unwrapped) Entries from c.
1422 Object[] arr = c.toArray(a.length==0 7 a : Arrays.copy0Of(a, 0));
1423

1424 for (int i=0; i<arr.length; i++)

1425 arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
1426

1427 if (arr.length > a.length)

1428 return (T[])arr;

1429

1430 System.arraycopy(arr, 0, a, 0, arr.length);

1431 if (a.length > arr.length)

1432 alarr.length] = null;

1433 return a;

1434 }

1435

1436 /k*

1437 # This method is overridden to protect the backing set against
1438 # an object with a nefarious equals function that senses

1439 # that the equality-candidate is Map. Entry and calls its

1440 * setValue method.

1441 */

1442 public boolean contains(Object o) {

1443 if (!(o instanceof Map.Entry))

1444 return false;

1445 return c.contains(

1446 new UnmodifiableEntry<>((Map.Entry<?,?>) 0));

1447 }

1448

1449 /**

1450 # The next two methods are overridden to protect against

1451 # an unscrupulous List whose contains (Object o) method senses
1452 # when o is a Map.Entry, and calls o.setValue.

1453 */

1454 public boolean containsAll(Collection<?> coll) {

1455 for (Object e : coll) {

1456 if (lcontains(e)) // Invokes safe contains() above

1457 return false;

1458 }

1459 return true;

1460 }

1461 public boolean equals(Object o) {

1462 if (o == this)

1463 return true;

33

1464

1465 if (! (o instanceof Set))

1466 return false;

1467 Set s = (Set) o;

1468 if (s.size() != c.size())

1469 return false;

1470 return containsAll(s); // Invokes safe containsAll() above

1471 }

1472

1473 J**

1474 # This "wrapper class” serves two purposes: it prevents

1475 # the client from modifying the backing Map, by short-circuiting
1476 *# the setValue method, and it protects the backing Map against
1477 # an ill-behaved Map. Entry that attempts to modify another

1478 # Map Entry when asked to perform an equality check.

1479 */

1480 private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1481 private Map.Entry<? extends K, 7 extends V> e;

1482

1483 UnmodifiableEntry(Map.Entry<? extends K, 7 extends V> e) {this.e = e;}
1484

1485 public K getKey() {return e.getKey();?}

1486 public V getValue() {return e.getValue(Q;3}

1487 public V setValue(V value) {

1488 throw new UnsupportedOperationException();

1489 }

1490 public int hashCode() {return e.hashCode();}

1491 public boolean equals(Object o) {

1492 if (this == o)

1493 return true;

1494 if (!(o instanceof Map.Entry))

1495 return false;

1496 Map.Entry t = (Map.Entry)o;

1497 return eq(e.getKey(), t.getKey()) &&

1498 eq(e.getValue(), t.getValue());

1499 }

1500 public String toString() {return e.toString();}

1501 }

1502 }

1503 }

1504

1505 /**

1506 # Returns an unmodifiable view of the specified sorted map. This method
1507 *# allows modules to provide users with "read-only” access to internal
1508 # sorted maps. Query operations on the returned sorted map "read through”
1509 * to the specified sorted map. Attempts to modify the returned

34

1510 # sorted map, whether direct, via its collection views, or via its
1511 # <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1512 * an <tt>UnsupportedOperationException</tt>. <p>

1513 *

1514 # The returned sorted map will be serializable if the specified sorted map
1515 * 1is serializable.

1516 *

1517 * @param m the sorted map for which an unmodifiable view is to be

1518 * returned.

1519 # @return an unmodifiable view of the specified sorted map.

1520 */

1521 public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, 7 extends V> m) {
1522 return new UnmodifiableSortedMap<>(m) ;

1523 }

1524

1525 /¥

1526 # @serial include

1527 */

1528 static class UnmodifiableSortedMap<K,V>

1529 extends UnmodifiableMap<K,V>

1530 implements SortedMap<K,V>, Serializable {

1531 private static final long serialVersionUID = -8806743815996713206L;
1532

1533 private final SortedMap<K, 7 extends V> sm;

1534

1535 UnmodifiableSortedMap (SortedMap<K, 7 extends V> m) {super(m); sm = m;}
1536

1537 public Comparator<? super K> comparator() {return sm.comparator();}
1538

1539 public SortedMap<K,V> subMap(K fromKey, K toKey) {

1540 return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1541 }

1542 public SortedMap<K,V> headMap(K toKey) {

1543 return new UnmodifiableSortedMap<>(sm.headMap (toKey));

1544 }

1545 public SortedMap<K,V> tailMap(K fromKey) {

1546 return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)) ;

1547 }

1548

1549 public K firstKey() {return sm.firstKey();}

1550 public K lastKey() {return sm.lastKey(Q;}

1551 }

1552

1553

1554 // Synch Wrappers

35

H
o
ot
[=]
N
X
*

Returns a synchronized (thread-safe) collection backed by the specified
collection. In order to guarantee serial access, it is critical that
all access to the backing collection is accomplished
through the returned collection. <p>

It is imperative that the user manually synchronize on the returned
collection when iterating over it:

<pre>

Collection ¢ = Collections. synchronizedCollection (myCollection);

synchronized (c) {
Iterator i = c.iterator(); // Must be in the synchronized block
while (1i.hasNext())
foo(i.next());

1569
1570
}

</pre>

Failure to follow this advice may result in non-deterministic behavior.

1571

1572

<p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
and <tt>equals</tt> operations through to the backing collection, but
relies on <tt>0Object</tt>’'s equals and hashCode methods. This is
necessary to preserve the contracts of these operations in the case
that the backing collection is a set or a list. <p>

The returned collection will be serializable if the specified collection
is serializable.

Oparam c¢ the collection to be "wrapped” in a synchronized collection.
Oreturn a synchronized view of the specified collection.

¥ oK X K X % %

1586 */

1587 public static <T> Collection<T> synchronizedCollection(Collection<T> c) {

1588 return new SynchronizedCollection<>(c);

1589 }

1590

1591 static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1592 return new SynchronizedCollection<>(c, mutex);

1593 }

1594

1595 [k

1596 # @serial include

1597 */

1598 static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1599 private static final long serialVersionUID = 3053995032091335093L;

1600

1601 final Collection<E> c; // Backing Collection

36

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

final Object mutex; // Object on which to synchronize

SynchronizedCollection(Collection<E> c) {
if (c==null)
throw new NullPointerException();
this.c = c;
mutex = this;
X
SynchronizedCollection(Collection<E> ¢, Object mutex) {
this.c = c;
this.mutex = mutex;

}

public int size() {
synchronized (mutex) {return c.size();}
}
public boolean isEmpty() {
synchronized (mutex) {return c.isEmpty();}
}
public boolean contains(Object o) {
synchronized (mutex) {return c.contains(o);}
}
public Object[] toArray() {
synchronized (mutex) {return c.toArray();}
}
public <T> T[] toArray(T[] a) {
synchronized (mutex) {return c.toArray(a);}

}

public Iterator<E> iterator() {
return c.iterator(); // Must be manually synched by user!

}

public boolean add(E e) {
synchronized (mutex) {return c.add(e);}
}
public boolean remove(Object o) {
synchronized (mutex) {return c.remove(o);}

}

public boolean containsAll(Collection<?> coll) {
synchronized (mutex) {return c.containsAll(coll);}

}
public boolean addAll(Collection<? extends E> coll) {
synchronized (mutex) {return c.addAll(coll);}

3

37

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

Jk*

¥ ¥ %X X X ¥ X X ¥ X X ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ % *x *

*/

public boolean removeAll(Collection<?> coll) {
synchronized (mutex) {return c.removeAll(coll);}

}

public boolean retainAll(Collection<?> coll) {
synchronized (mutex) {return c.retainAll(coll);}

}

public void clear() {
synchronized (mutex) {c.clear();}

}

public String toString() {
synchronized (mutex) {return c.toString();}

}

private void writeObject(ObjectOutputStream s) throws IOException {
synchronized (mutex) {s.defaultWriteObject();}

}

Returns a synchronized (thread-safe) set backed by the specified
set. In order to guarantee serial access, it is critical that
all access to the backing set is accomplished
through the returned set. <p>

It is imperative that the user manually synchronize on the returned
set when iterating over it:

<pre>

Set s = Collections. synchronizedSet (new HashSet ());

synchronized (s) {
Iterator i = s. iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());
}
</pre>
Failure to follow this advice may result in non-deterministic behavior.

<p>The returned set will be serializable if the specified set is
serializable.

Oparam s the set to be "wrapped” in a synchronized set.
Oreturn a synchronized view of the specified set.

public static <T> Set<T> synchronizedSet (Set<T> s) {

3

return new SynchronizedSet<>(s);

38

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
return new SynchronizedSet<>(s, mutex);

3

VLTS
@serial include
*/
static class SynchronizedSet<E>
extends SynchronizedCollection<E>
implements Set<E> {
private static final long serialVersionUID = 487447009682186044L;

SynchronizedSet (Set<E> s) {
super(s);

}

SynchronizedSet (Set<E> s, Object mutex) {
super (s, mutex);

}

public boolean equals(Object o) {
if (this == o)
return true;
synchronized (mutex) {return c.equals(o);}
}
public int hashCode() {
synchronized (mutex) {return c.hashCode();}

}

/K

Returns a synchronized (thread-safe) sorted set backed by the specified
sorted set. 1In order to guarantee serial access, it is critical that
all access to the backing sorted set is accomplished
through the returned sorted set (or its views).<p>

It is imperative that the user manually synchronize on the returned
sorted set when iterating over it or any of its <tt>subSet</tt>,
<tt>headSet</tt>, or <tt>tailSet</tt> views.

<pre>

SortedSet s = Collections. synchronizedSortedSet (new TreeSet ());

synchronized (s) {
Iterator i = s. iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());

¥ X K K X X X X X X X X X %X % %

39

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

* </pre>

* 0r:

* <pre>

SortedSet s = Collections. synchronizedSortedSet (new TreeSet ());

SortedSet s2 = s.headSet (foo);

synchronized (s) { // Note: s, not s2///

* Iterator i = s2.iterator(); // Must be in the synchronized block
* while (i.hasNext())

* foo(i.next());

* }

* </pre>

Failure to follow this advice may result in non-deterministic behavior.
*

<p>The returned sorted set will be serializable if the specified

* sorted set is serializable.

*

*# @param s the sorted set to be "wrapped” in a synchronized sorted set.
@return a synchronized view of the specified sorted set.

*/

public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
return new SynchronizedSortedSet<>(s);

}

Jk*
@serial include
*/
static class SynchronizedSortedSet<E>
extends SynchronizedSet<E>
implements SortedSet<E>

private static final long serialVersionUID = 8695801310862127406L;
private final SortedSet<E> ss;

SynchronizedSortedSet (SortedSet<E> s) {
super(s);
ss = s;
}
SynchronizedSortedSet (SortedSet<E> s, Object mutex) {
super (s, mutex);
ss = s;

}

public Comparator<? super E> comparator() {
synchronized (mutex) {return ss.comparator();}

40

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

Jk*

¥ X X X X X X X X X X X X X X X X %

}

public SortedSet<E> subSet(E fromElement, E toElement) {
synchronized (mutex) {
return new SynchronizedSortedSet<>(
ss.subSet (fromElement, toElement), mutex);
}
}
public SortedSet<E> headSet(E toElement) {
synchronized (mutex) {
return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
}
}
public SortedSet<E> tailSet(E fromElement) {
synchronized (mutex) {
return new SynchronizedSortedSet<>(ss.tailSet(fromElement) ,mutex) ;
}
}

public E first() {

synchronized (mutex) {return ss.first();}
}
public E last() {

synchronized (mutex) {return ss.last();}

3

Returns a synchronized (thread-safe) list backed by the specified
list. In order to guarantee serial access, it is critical that
all access to the backing list is accomplished
through the returned list. <p>

It is imperative that the user manually synchronize on the returned
list when iterating over it:

<pre>

List 1list = Collections. synchronizedList (new ArrayList ());

synchronized (list) {
Iterator i = list.iterator(); // Must be in synchronized block
while (i.hasNext())
foo(i.next());
}
</pre>
Failure to follow this advice may result in non-deterministic behavior.

41

1832 # <p>The returned list will be serializable if the specified list is
1833 * serializable.

1834 *

1835 # @Oparam list the list to be "wrapped” in a synchronized list.
1836 # @return a synchronized view of the specified list.

1837 */

1838 public static <T> List<T> synchronizedList(List<T> list) {
1839 return (list instanceof RandomAccess 7

1840 new SynchronizedRandomAccessList<>(1list)

1841 new SynchronizedList<>(list));

1842 }

1843

1844 static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1845 return (list instanceof RandomAccess 7

1846 new SynchronizedRandomAccessList<>(list, mutex)
1847 new SynchronizedList<>(list, mutex));

1848 }

1849

1850 [k

1851 # @serial include

1852 */

1853 static class SynchronizedList<E>

1854 extends SynchronizedCollection<E>

1855 implements List<E> {

1856 private static final long serialVersionUID = -7754090372962971524L;
1857

1858 final List<E> list;

1859

1860 SynchronizedList (List<E> list) {

1861 super(list);

1862 this.list = list;

1863 }

1864 SynchronizedList (List<E> list, Object mutex) {

1865 super (list, mutex);

1866 this.list = list;

1867 }

1868

1869 public boolean equals(Object o) {

1870 if (this == o)

1871 return true;

1872 synchronized (mutex) {return list.equals(o);}

1873 }

1874 public int hashCode() {

1875 synchronized (mutex) {return list.hashCode();}

1876 }

1877

42

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

public E get(int index) {
synchronized (mutex) {return list.get(index);}
}
public E set(int index, E element) {
synchronized (mutex) {return list.set(index, element);}
}
public void add(int index, E element) {
synchronized (mutex) {list.add(index, element);}
}
public E remove(int index) {
synchronized (mutex) {return list.remove(index);}

}

public int indexOf(Object o) {
synchronized (mutex) {return list.index0f (o);}
}
public int lastIndex0f(Object o) {
synchronized (mutex) {return list.lastIndexOf(o);}

3

public boolean addAll(int index, Collection<? extends E> c) {
synchronized (mutex) {return list.addAll(index, c);}

}

public ListIterator<E> listIterator() {
return list.listIterator(); // Must be manually synched by user

}

public ListIterator<E> listIterator(int index) {
return list.listIterator(index); // Must be manually synched by user

}

public List<E> subList(int fromIndex, int toIndex) {
synchronized (mutex) {
return new SynchronizedList<>(list.subList(fromIndex, toIndex),
mutex) ;

VEZS

SynchronizedRandomAccessList instances are serialized as
SynchronizedlList instances to allow them to be deserialized

in pre-7./ JREs (which do not have SynchronizedRandomAccessList).
This method inverts the transformation. As a beneficial
side-effect, it also grafts the RandomAccess marker onto
SynchronizedList instances that were serialized in pre-7./ JREs.

¥ ¥ ¥ %X *x %

43

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

Note: Unfortunately, SynchronizedRandomAccessList instances
serialized in 7.4.1 and deserialized in 7.4 will become
SynchronizedList instances, as this method was missing in 7.4.

* % %X %

*/
private Object readResolve() {
return (list instanceof RandomAccess
? new SynchronizedRandomAccessList<>(list)
: this);

#* @serial include

static class SynchronizedRandomAccessList<E>

extends SynchronizedList<E>
implements RandomAccess {

SynchronizedRandomAccessList (List<E> list) {
super(list);
}

SynchronizedRandomAccessList (List<E> list, Object mutex) {
super(list, mutex);

}

public List<E> subList(int fromIndex, int toIndex) {
synchronized (mutex) {
return new SynchronizedRandomAccessList<>(
list.subList(fromIndex, toIndex), mutex);

private static final long serialVersionUID = 1530674583602358482L;

VLTS
Allows instances to be deserialized in pre-7./ JREs (which do
not have SynchronizedRandomAccessList). SynchronizedList has
* a readResolve method that inverts this transformation upon
* deserialization.
*/
private Object writeReplace() {
return new SynchronizedList<>(list);

3

44

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Jk*

Returns a synchronized (thread-safe) map backed by the specified
map. In order to guarantee serial access, it is critical that
all access to the backing map is accomplished
through the returned map. <p>

It is imperative that the user manually synchronize on the returned
map when iterating over any of its collection views:

<pre>

Map m = Collections. synchronizedMap (new HashMap ());

Set s = m.keySet(); // Needn't be in synchronized block

synchronized (m) { // Synchronizing on m, not s/
Iterator i = s. iterator(); // Must be in synchronized block
while (i.hasNext())
foo(i.next());
}
</pre>
Failure to follow this advice may result in non-deterministic behavior.

<p>The returned map will be serializable if the specified map is
serializable.

Oparam m the map to be "wrapped” in a synchronized map.
Oreturn a synchronized view of the specified map.

¥ X % X X ¥ X X X ¥ X X ¥ ¥ X X ¥ X X ¥ ¥ X *x * *

*/
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
return new SynchronizedMap<>(m);

}

VLS
@serial include
*/
private static class SynchronizedMap<K,V>
implements Map<K,V>, Serializable {
private static final long serialVersionUID = 1978198479659022715L;

private final Map<K,V> m; // Backing Map
final Object mutex; // Object on which to synchronize

SynchronizedMap (Map<K,V> m) {
if (m==null)
throw new NullPointerException();
this.m = m;

45

2016 mutex = this;

2017 }

2018

2019 SynchronizedMap (Map<K,V> m, Object mutex) {

2020 this.m = m;

2021 this.mutex = mutex;

2022 }

2023

2024 public int size() {

2025 synchronized (mutex) {return m.size();}

2026 }

2027 public boolean isEmpty() {

2028 synchronized (mutex) {return m.isEmpty();}

2029 }

2030 public boolean containsKey(Object key) {

2031 synchronized (mutex) {return m.containsKey(key);}
2032 }

2033 public boolean containsValue(Object value) {

2034 synchronized (mutex) {return m.containsValue(value);}
2035 }

2036 public V get(Object key) {

2037 synchronized (mutex) {return m.get(key);}

2038 }

2039

2040 public V put(K key, V value) {

2041 synchronized (mutex) {return m.put(key, value);}
2042 }

2043 public V remove(Object key) {

2044 synchronized (mutex) {return m.remove(key);}

2045 }

2046 public void putAll(Map<? extends K, 7 extends V> map) {
2047 synchronized (mutex) {m.putAll(map);}

2048 }

2049 public void clear() {

2050 synchronized (mutex) {m.clear();}

2051 }

2052

2053 private transient Set<K> keySet = null;

2054 private transient Set<Map.Entry<K,V>> entrySet = null;
2055 private transient Collection<V> values = null;

2056

2057 public Set<K> keySet() {

2058 synchronized (mutex) {

2059 if (keySet==null)

2060 keySet = new SynchronizedSet<>(m.keySet(), mutex);
2061 return keySet;

46

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Jk*

* X X X X X X %X %X %

}

public Set<Map.Entry<K,V>> entrySet() {
synchronized (mutex) {
if (entrySet==null)
entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
return entrySet;

}

public Collection<V> values() {
synchronized (mutex) {
if (values==null)
values = new SynchronizedCollection<>(m.values(), mutex);
return values;

}

public boolean equals(Object o) {
if (this == o)
return true;
synchronized (mutex) {return m.equals(o);}
}
public int hashCode() {
synchronized (mutex) {return m.hashCode();}
}
public String toString() {
synchronized (mutex) {return m.toString();}
}
private void writeObject(ObjectOutputStream s) throws IOException {
synchronized (mutex) {s.defaultWriteObject();}
}

Returns a synchronized (thread-safe) sorted map backed by the specified
sorted map. In order to guarantee serial access, it is critical that
all access to the backing sorted map is accomplished
through the returned sorted map (or its views).<p>

It is imperative that the user manually synchronize on the returned
sorted map when iterating over any of its collection views, or the
collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
<tt>tailMap</tt> views.

<pre>

47

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

SortedMap m = Collections. synchronizedSortedMap (new TreeMap ());
Set s = m.keySet(); // Needn't be in synchronized block

synchronized (m) { // Synchronizing on m, not s/
Iterator i = s.iterator(); // Must be in synchronized block
while (i.hasNext())
foo(i.next());
}
</pre>
or:
<pre>
SortedMap m = Collections. synchronizedSortedMap (new TreeMap ());
SortedMap m2 = m. subMap (foo, bar);

Set s2 = m2.keySet(); // Needn't be in synchronized block

synchronized (m) { // Synchronizing on m, not m2 or s2/
Iterator i = s. iterator(); // Must be in synchronized block
while (i.hasNext())
foo(i.next());
}
</pre>
Failure to follow this advice may result in non-deterministic behavior.

<p>The returned sorted map will be serializable if the specified
sorted map is serializable.

*
*
*
*
*
x*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x*
*
*
*
*
*
*
*# @param m the sorted map to be "wrapped” in a synchronized sorted map.
@return a synchronized view of the specified sorted map.
*/
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
return new SynchronizedSortedMap<>(m);

3

VLT
@Oserial include
*/
static class SynchronizedSortedMap<K, V>
extends SynchronizedMap<kK,V>
implements SortedMap<K,V>

private static final long serialVersionUID = -8798146769416483793L;

private final SortedMap<K,V> sm;

48

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

}

SynchronizedSortedMap (SortedMap<K,V> m) {
super (m) ;
sm = m;
}
SynchronizedSortedMap (SortedMap<K,V> m, Object mutex) {
super (m, mutex);
sm = m;

3

public Comparator<? super K> comparator() {
synchronized (mutex) {return sm.comparator();}

3

public SortedMap<K,V> subMap(K fromKey, K toKey) {
synchronized (mutex) {
return new SynchronizedSortedMap<>(
sm.subMap (fromKey, toKey), mutex);
}
}
public SortedMap<K,V> headMap(K toKey) {
synchronized (mutex) {
return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
}
}
public SortedMap<K,V> tailMap(K fromKey) {
synchronized (mutex) {
return new SynchronizedSortedMap<>(sm.tailMap(fromKey) ,mutex) ;
}
}

public K firstKey() {
synchronized (mutex) {return sm.firstKey();}

}
public K lastKey() {
synchronized (mutex) {return sm.lastKey();}

}

// Dynamically typesafe collection wrappers

k%

* %X % %

Returns a dynamically typesafe view of the specified collection.

Any attempt to insert an element of the wrong type will result in an
immediate {@link ClassCastException}. Assuming a collection
contains no incorrectly typed elements prior to the time a

49

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

XX X K X X X X K X X X X K X ¥ X ¥ X X %X %

dynamically typesafe view is generated, and that all subsequent
access to the collection takes place through the view, it is
<i>guaranteed</i> that the collection cannot contain an incorrectly
typed element.

<p>The generics mechanism in the language provides compile-time
(static) type checking, but it is possible to defeat this mechanism
with unchecked casts. Usually this is not a problem, as the compiler
issues warnings on all such unchecked operations. There are, however,
times when static type checking alone is not sufficient. For example,
suppose a collection is passed to a third-party library and it is
imperative that the library code not corrupt the collection by
inserting an element of the wrong type.

<p>Another use of dynamically typesafe views is debugging. Suppose a
program fails with a {@code ClassCastException}, indicating that an
incorrectly typed element was put into a parameterized collection.
Unfortunately, the exception can occur at any time after the erroneous
element is inserted, so it typically provides little or no information
as to the real source of the problem. If the problem is reproducible,
one can quickly determine its source by temporarily modifying the
program to wrap the collection with a dynamically typesafe view.
For example, this declaration:
<pre> {@code
Collection<String> c¢ = new HashSet<String>();
}</pre>
may be replaced temporarily by this one:
<pre> {@code
Collection<String> ¢ = Collections. checkedCollection (
new HashSet<String>(), String. class);
}</pre>
Running the program again will cause it to fail at the point where
an incorrectly typed element is inserted into the collection, clearly
identifying the source of the problem. Once the problem is fixed, the
modified declaration may be reverted back to the original.

<p>The returned collection does <i>not</i> pass the hashCode and equals
operations through to the backing collection, but relies on

{@code Object}'s {@code equals} and {@code hashCode} methods. This
is necessary to preserve the contracts of these operations in the case
that the backing collection is a set or a list.

<p>The returned collection will be serializable if the specified
collection is serializable.

<p>Since {@code null} is considered to be a value of any reference

50

2246 * type, the returned collection permits insertion of null elements
2247 * whenever the backing collection does.

2248 *

2249 # @param c the collection for which a dynamically typesafe view is to be
2250 * returned

2251 # Oparam type the type of element that {@code c} is permitted to hold
2252 *# @return a dynamically typesafe view of the specified collection
2253 * @since 1.5

2254 */

2255 public static <E> Collection<E> checkedCollection(Collection<E> c,
2256 Class<E> type) {
2257 return new CheckedCollection<>(c, type);

2258 }

2259

2260 @SuppressWarnings ("unchecked")

2261 static <T> T[] zeroLengthArray(Class<T> type) {

2262 return (T[]) Array.newInstance(type, 0);

2263 }

2264

2265 /**

2266 # @serial include

2267 */

2268 static class CheckedCollection<E> implements Collection<E>, Serializable {
2269 private static final long serialVersionUID = 1578914078182001775L;
2270

2271 final Collection<E> c;

2272 final Class<E> type;

2273

2274 void typeCheck(Object o) {

2275 if (o != null &% !type.isInstance(o))

2276 throw new ClassCastException(badElementMsg(o));

2277 }

2278

2279 private String badElementMsg(Object o) {

2280 return "Attempt to insert " + o.getClass() +

2281 " element into collection with element type " + type;
2282 }

2283

2284 CheckedCollection(Collection<E> c, Class<E> type) {

2285 if (c==null || type == null)

2286 throw new NullPointerException();

2287 this.c = c;

2288 this.type = type;

2289 }

2290

2201 public int size() { return c.size(Q); }

o1

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

public boolean isEmpty() { return c.isEmpty(Q); }
public boolean contains(Object o) { return c.contains(o); }
public Object[] toArray() { return c.toArray(); }
public <T> T[] toArray(T[] a) { return c.toArray(a); }
public String toString() { return c.toString(); }
public boolean remove(Object o) { return c.remove(o); }
public void clear() { c.clear(); %}

public boolean containsAll(Collection<?> coll) {
return c.containsAll(coll);

}

public boolean removeAll(Collection<?> coll) {
return c.removeAll(coll);

}

public boolean retainAll(Collection<?> coll) {
return c.retainAll(coll);

}

public Iterator<E> iterator() {
final Iterator<E> it = c.iterator();
return new Iterator<iE>() {
public boolean hasNext() { return it.hasNext(); }
public E next() { return it.next(); }
public void remove() { it.remove(); }};

3

public boolean add(E e) {
typeCheck(e) ;
return c.add(e);

}
private E[] zeroLengthElementArray = null; // Lazily initialized

private E[] zeroLengthElementArray() {
return zerolLengthElementArray != null ? zeroLengthElementArray :
(zeroLengthElementArray = zeroLengthArray(type));

}

@SuppressWarnings ("unchecked")
Collection<E> checkedCopyOf(Collection<? extends E> coll) {
Object[] a = null;
try {
E[] z = zerolLengthElementArray();
a = coll.toArray(z);
// Defend against coll violating the toArray contract
if (a.getClass() != z.getClass())

92

2338 a = Arrays.copyOf (a, a.length, z.getClass());

2339 } catch (ArrayStoreException ignore) {

2340 // To get better and consistent diagnostics,

2341 // we call typeCheck explicitly on each element.

2342 // We call clone() to defend against coll retaining a
2343 // reference to the returned array and storing a bad
2344 // element into it after it has been type checked.
2345 a = coll.toArray().clone();

2346 for (Object o : a)

2347 typeCheck (o) ;

2348 }

2349 // A slight abuse of the type system, but safe here.

2350 return (Collection<E>) Arrays.asList(a);

2351 }

2352

2353 public boolean addAll(Collection<? extends E> coll) {

2354 // Doing things this way insulates us from concurrent changes
2355 // in the contents of coll and provides all-or-nothing
2356 // semantics (which we wouldn't get if we type-checked each
2357 // element as we added it)

2358 return c.addAll(checkedCopyOf (coll));

2359 }

2360 }

2361

2362 /**

2363 Returns a dynamically typesafe view of the specified set.

Any attempt to insert an element of the wrong type will result in

an immediate {@link ClassCastException}. Assuming a set contains

no incorrectly typed elements prior to the time a dynamically typesafe
view is generated, and that all subsequent access to the set

takes place through the view, it is <i>guaranteed</i> that the

set cannot contain an incorrectly typed element.

2364
2365
2366
2367
2368
2369
2370
2371 <p>A discussion of the use of dynamically typesafe views may be
found in the documentation for the {@link #checkedCollection
checkedCollection} method.

2372
2373
2374
2375 <p>The returned set will be serializable if the specified set is
2376 serializable.
2377
2378 <p>Since {@code null} is considered to be a value of any reference
type, the returned set permits insertion of null elements whenever

the backing set does.

2379
2380
2381
2382 Oparam s the set for which a dynamically typesafe view is to be

returned

¥ ¥ %X X X ¥ X X ¥ %X ¥ X ¥ X X ¥ * X * * *

2383

93

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

@Oparam type the type of element that {@code s} is permitted to hold
@return a dynamically typesafe view of the specified set
* @since 1.5
*/
public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
return new CheckedSet<>(s, type);
b

Jk*
#* @serial include
*/
static class CheckedSet<E> extends CheckedCollection<E>
implements Set<E>, Serializable

{
private static final long serialVersionUID = 4694047833775013803L;
CheckedSet (Set<E> s, Class<E> elementType) { super(s, elementType); }
public boolean equals(Object o) { return o == this || c.equals(o); }
public int hashCode() { return c.hashCode(); }

}

Jk*

Returns a dynamically typesafe view of the specified sorted set.

Any attempt to insert an element of the wrong type will result in an
immediate {@link ClassCastException}. Assuming a sorted set
contains no incorrectly typed elements prior to the time a
dynamically typesafe view is generated, and that all subsequent
access to the sorted set takes place through the view, it is
<i>guaranteed</i> that the sorted set cannot contain an incorrectly
typed element.

<p>A discussion of the use of dynamically typesafe views may be
found in the documentation for the {@link #checkedCollection
checkedCollection} method.

<p>The returned sorted set will be serializable if the specified sorted
set is serializable.

<p>Since {@code null} is considered to be a value of any reference
type. the returned sorted set permits insertion of null elements
whenever the backing sorted set does.

Oparam s the sorted set for which a dynamically typesafe view is to be
returned
Oparam type the type of element that {@code s} is permitted to hold

¥ X K K K K X X X X X % X X X X X ¥ ¥ ¥ ¥ * %

o4

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

*
*

*/

Oreturn a dynamically typesafe view of the specified sorted set
O@since 1.5

public static <E> SortedSet<E> checkedSortedSet (SortedSet<E> s,

}

Jk*

*

*/

Class<E> type) {
return new CheckedSortedSet<>(s, type);

@serial include

static class CheckedSortedSet<E> extends CheckedSet<E>

VEZS

* X X X X % %X X%

implements SortedSet<E>, Serializable

private static final long serialVersionUID = 1599911165492914959L;
private final SortedSet<E> ss;

CheckedSortedSet (SortedSet<E> s, Class<E> type) {
super (s, type);

ss = s;
}

public Comparator<? super E> comparator() { return ss.comparator(); }
public E first() { return ss.first(); }

public E last() { return ss.last(); }

public SortedSet<E> subSet(E fromElement, E toElement) {
return checkedSortedSet(ss.subSet (fromElement,toElement), type);
}
public SortedSet<E> headSet(E toElement) {
return checkedSortedSet(ss.headSet(toElement), type);
}
public SortedSet<E> tailSet(E fromElement) {
return checkedSortedSet(ss.tailSet(fromElement), type);
}

Returns a dynamically typesafe view of the specified list.

Any attempt to insert an element of the wrong type will result in

an immediate {@link ClassCastException}. Assuming a list contains

no incorrectly typed elements prior to the time a dynamically typesafe
view is generated, and that all subsequent access to the list

takes place through the view, it is <i>guaranteed</i> that the

list cannot contain an incorrectly typed element.

99

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

<p>A discussion of the use of dynamically typesafe views may be

found in the documentation for the {@link #checkedCollection

checkedCollection} method.

*

<p>The returned list will be serializable if the specified list

1is serializable.

*

<p>Since {@code null} is considered to be a value of any reference
* type, the returned list permits insertion of null elements whenever
* the backing list does.

x*

@param list the list for which a dynamically typesafe view is to be
* returned

Oparam type the type of element that {@code list} is permitted to hold
@return a dynamically typesafe view of the specified list

* @since 1.5

*/

public static <E> List<E> checkedList(List<E> list, Class<E> type) {
return (list instanceof RandomAccess 7
new CheckedRandomAccessList<>(list, type)
new CheckedList<>(list, type));
}

Jk*
@serial include
*/
static class CheckedList<E>
extends CheckedCollection<E>
implements List<E>

private static final long serialVersionUID = 65247728283967356L;
final List<E> list;

CheckedList (List<E> list, Class<E> type) {
super (list, type);
this.list = list;

public boolean equals(Object o)
public int hashCode()

public E get(int index)

public E remove(int index)
public int indexOf (Object o)
public int lastIndex0f(Object o)

return o == this || list.equals(o); }
return list.hashCode(); }

return list.get(index); }

return list.remove(index); }

return list.index0f(o); }

return list.lastIndex0f(o); }

B N W

public E set(int index, E element) {

96

}

VLS

3

public void add(int index, E element) {

3

typeCheck(element) ;

return list.set(index, element);

typeCheck(element) ;

list.add(index, element);

public boolean addAll(int index, Collection<? extends E> c) {

}

public ListIterator<E> listIterator()

return list.addAll(index, checkedCopyOf(c));

{ return listIterator(0); }

public ListIterator<E> listIterator(final int index) {
final ListIterator<E> i = list.listIterator(index);

}

return new ListIterator<E>() {
public boolean hasNext()

public E next()

public boolean hasPrevious()
public E previous()

public int nextIndex()
public int previousIndex()
public void remove()

public void set(E e) {

typeCheck(e);

i.set(e);

}

public void add(E e) {

typeCheck(e);

i.add(e);

};

N e

return
return
return
return
return
return

T A N

.hasNext(); }
.next(); }
.hasPrevious(); }
.previous(); }
.nextIndex(); }
.previousIndex(); }
.remove(); }

public List<E> subList(int fromIndex, int toIndex) {

3

return new CheckedList<>(list.subList(fromIndex, toIndex), type);

* @serial include

*/

o7

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

static class CheckedRandomAccessList<E> extends CheckedList<E>

N
*
*

¥ O X K X X X X K X X X X X X X X X X X X X ¥ X X X X ¥ X %

implements RandomAccess
private static final long serialVersionUID = 1638200125423088369L;

CheckedRandomAccessList (List<E> list, Class<E> type) {
super (list, type);
}

public List<E> subList(int fromIndex, int toIndex) {
return new CheckedRandomAccessList<>(
list.subList(fromIndex, tolIndex), type);

Returns a dynamically typesafe view of the specified map.

Any attempt to insert a mapping whose key or value have the wrong
type will result in an immediate {@link ClassCastException}.
Similarly, any attempt to modify the value currently associated with
a key will result in an immediate {@link ClassCastException},
whether the modification is attempted directly through the map
itself, or through a {@link Map.Entry} instance obtained from the
map 's {@link Map#entrySet() entry set} view.

<p>Assuming a map contains no incorrectly typed keys or values
prior to the time a dynamically typesafe view is generated, and
that all subsequent access to the map takes place through the view
(or one of its collection views), it is <i>guaranteed</i> that the
map cannot contain an incorrectly typed key or value.

<p>A discussion of the use of dynamically typesafe views may be
found in the documentation for the {@link #checkedCollection
checkedCollection} method.

<p>The returned map will be serializable if the specified map is
serializable.

<p>Since {@code null} is considered to be a value of any reference
type, the returned map permits insertion of null keys or values
whenever the backing map does.

Oparam m the map for which a dynamically typesafe view is to be
returned

Oparam keyType the type of key that {@code m} is permitted to hold

Oparam valueType the type of value that {@code m} is permitted to hold

98

2614 # @return a dynamically typesafe view of the specified map
2615 * @since 1.5

2616 */

2617 public static <K, V> Map<K, V> checkedMap(Map<K, V> m,

2618 Class<K> keyType,
2619 Class<V> valueType) {
2620 return new CheckedMap<>(m, keyType, valueType);

2621 }

2622

2623

2624 /**

2625 # @serial include

2626 */

2627 private static class CheckedMap<K,V>

2628 implements Map<K,V>, Serializable

2629 {

2630 private static final long serialVersionUID = 5742860141034234728L;
2631

2632 private final Map<K, V> m;

2633 final Class<K> keyType;

2634 final Class<V> valueType;

2635

2636 private void typeCheck(Object key, Object value) {

2637 if (key != null &% !keyType.isInstance(key))

2638 throw new ClassCastException(badKeyMsg(key));

2639

2640 if (value != null && !valueType.isInstance(value))
2641 throw new ClassCastException(badValueMsg(value));
2642 }

2643

2644 private String badKeyMsg(Object key) {

2645 return "Attempt to insert " + key.getClass() +

2646 " key into map with key type " + keyType;

2647 }

2648

2649 private String badValueMsg(Object value) {

2650 return "Attempt to insert " + value.getClass() +

2651 " value into map with value type " + valueType;
2652 }

2653

2654 CheckedMap (Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2655 if (m == null || keyType == null || valueType == null)
2656 throw new NullPointerException();

2657 this.m = m;

2658 this.keyType = keyType;

2659 this.valueType = valueType;

99

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

public
public
public
public
public
public
public
public
public
public
public
public

public

.size(); %}
.isEmpty(); }
.containsKey(key); }
.containsValue(v); }
.get(key); }

remove (key); }

.keySet(); ¥

.values(; }

== this || m.equals(o); }
.hashCode(); }

int size() { return m
boolean isEmpty() { return m
boolean containsKey(Object key) { return m
boolean containsValue(Object v) { return m
V get(Object key) { return m
V remove(Object key) { return m.
void clear() { m.clear(); }
Set<K> keySet () { return m
Collection<V> values() { return m
boolean equals(Object o) { return o
int hashCode() { return m
String toString() { return m

V put(K key, V value) {

typeCheck(key, value);
return m.put(key, value);

3

@SuppressWarnings ("unchecked")

public void putAll(Map<? extends K, 7 extends V> t) {
// Satisfy the following goals:
// - good diagnostics in case of type mismatch
// = all-or-nothing semantics
// - protection from malicious t
// = correct behavior if t is a concurrent map
Object[] entries = t.entrySet().toArray();
List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
for (Object o : entries) {

}

Map.Entry<?,7?> e = (Map.Entry<?,7>) o;
Object k = e.getKey();

Object v = e.getValue();

typeCheck(k, v);

checked.add(

.toString();

new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));

for (Map.Entry<K,V> e : checked)

m.put(e.getKey(), e.getValue());

private transient Set<Map.Entry<K,V>> entrySet

public
if

Set<Map.Entry<K,V>> entrySet() {
(entrySet==null)

null;

entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);

60

2706 return entrySet;

2707 }

2708

2709 /**

2710 # We need this class in addition to CheckedSet as Map. Entry permits
2711 # modification of the backing Map via the setValue operation. This
2712 # class is subtle: there are many possible attacks that must be
2713 * thwarted.

2714 *

2715 # Oserial exclude

2716 */

2717 static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2718 private final Set<Map.Entry<K,V>> s;

2719 private final Class<V> valueType;

2720

2721 CheckedEntrySet (Set<Map.Entry<K, V>> s, Class<V> valueType) {
2722 this.s = s;

2723 this.valueType = valueType;

2724 }

2725

2726 public int size() { return s.size(Q); }

2727 public boolean isEmpty() { return s.isEmpty(); }

2728 public String toString() { return s.toString(); }

2729 public int hashCode() { return s.hashCode(); }

2730 public void clear() { s.clear(); }

2731

2732 public boolean add(Map.Entry<K, V> e) {

2733 throw new UnsupportedOperationException();

2734 }

2735 public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2736 throw new UnsupportedOperationException();

2737 }

2738

2739 public Iterator<Map.Entry<K,V>> iterator() {

2740 final Iterator<Map.Entry<K, V>> i = s.iterator();

2741 final Class<V> valueType = this.valueType;

2742

2743 return new Iterator<Map.Entry<K,V>>() {

2744 public boolean hasNext() { return i.hasNext(); }

2745 public void remove() { i.remove(); }

2746

2747 public Map.Entry<K,V> next() {

2748 return checkedEntry(i.next(), valueType);

2749 }

2750 };

2751 }

61

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

@SuppressWarnings ("unchecked")
public Object[] toArray() {
Object[] source = s.toArray();

/%
* Ensure that we don't get an ArrayStoreException even if
* s.toArray returns an array of something other than Object
*/
Object[] dest = (CheckedEntry.class.isInstance(
source.getClass() .getComponentType()) 7 source
new Object[source.length]);

for (int i = 0; i < source.length; i++)
dest[i] = checkedEntry((Map.Entry<K,V>)sourcel[il],
valueType) ;
return dest;

}

@SuppressWarnings ("unchecked")
public <T> T[] toArray(T[] a) {
// We don't pass a to s.toArray, to avoid window of
// vulnerability wherein an unscrupulous multithreaded client
// could get his hands on raw (unwrapped) Entries from s.
T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));

for (int i=0; i<arr.length; i++)
arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
valueType) ;
if (arr.length > a.length)
return arr;

System.arraycopy(arr, 0, a, 0, arr.length);
if (a.length > arr.length)

alarr.length] = null;
return a;

}

Jk*
This method is overridden to protect the backing set against
*# an object with a nefarious equals function that senses
that the equality-candidate is Map. Entry and calls its
* setValue method.
*/
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))

62

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
return s.contains(
(e instanceof CheckedEntry) 7 e : checkedEntry(e, valueType));
}

Jk*
* The bulk collection methods are overridden to protect
* against an unscrupulous collection whose contains (Object o)
method senses when o is a Map. Entry, and calls o. setValue.
*/
public boolean containsAll(Collection<?> c) {
for (Object o : ¢)
if (!contains(o)) // Invokes safe contains() above
return false;
return true;

}

public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
return s.remove(new AbstractMap.SimpleImmutableEntry
<>((Map.Entry<?,7>)0));
}

public boolean removeAll(Collection<?> c) {
return batchRemove(c, false);
}
public boolean retainAll(Collection<?> c) {
return batchRemove(c, true);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
boolean modified = false;
Iterator<Map.Entry<K,V>> it = iterator();
while (it.hasNext()) {
if (c.contains(it.next()) != complement) {
it.remove();
modified = true;

}

return modified;

}

public boolean equals(Object o) {
if (o == this)
return true;

63

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

if (! (o instanceof Set))

return false;

Set<?> that = (Set<?>) o;
return that.size() == s.size()
&& containsAll(that); // Invokes safe containsAll() above

}

static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,

Class<T> valueType) {

return new CheckedEntry<>(e, valueType);

Jk*

the setValue method,

X ¥ ¥ % %

*/

This "wrapper class'” serves two purposes: it prevents
the client from modifying the backing Map, by short-circuiting

and it protects the backing Map against

an ill-behaved Map. Entry that attempts to modify another
Map. Entry when asked to perform an equality check.

private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
private final Map.Entry<K, V> e;
private final Class<T> valueType;

CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {

this.e = e¢;
this.valueType =

public K getKey()
public V getValue()
public int hashCode()

valueType;

{ return
{ return
{ return

public String toString() { return

public V setValue(V value) {
if (value != null &% !valueType.isInstance(value))

throw new ClassCastException(badValueMsg(value));

return e.setValue(value);

}

® ® ® O

.getKey(O; }

.getValue(); }
.hashCode(); }
.toString(); }

private String badValueMsg(Object value) {
return "Attempt to insert " + value.getClass() +

n

}

public boolean equals(Object o) {

if (o == this)

64

value into map with value type " + valueType;

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

return true;
if (!(o instanceof Map.Entry))
return false;
return e.equals(new AbstractMap.SimpleImmutableEntry
<>((Map.Entry<?,7>)0));

N
*
*

Returns a dynamically typesafe view of the specified sorted map.

Any attempt to insert a mapping whose key or value have the wrong
type will result in an immediate {@link ClassCastException}.
Similarly, any attempt to modify the value currently associated with
a key will result in an immediate {@link ClassCastException},
whether the modification is attempted directly through the map
itself, or through a {@link Map.Entry} instance obtained from the
map's {@link Map#entrySet() entry set} view.

<p>Assuming a map contains no incorrectly typed keys or values
prior to the time a dynamically typesafe view is generated, and
that all subsequent access to the map takes place through the view
(or one of its collection views), it is <i>guaranteed</i> that the
map cannot contain an incorrectly typed key or value.

<p>A discussion of the use of dynamically typesafe views may be
found in the documentation for the {@link #checkedCollection
checkedCollection} method.

<p>The returned map will be serializable if the specified map is
serializable.

<p>Since {@code null} is considered to be a value of any reference
type, the returned map permits insertion of null keys or values
whenever the backing map does.

Oparam m the map for which a dynamically typesafe view is to be
returned

Oparam keyType the type of key that {@code m} is permitted to hold

Oparam valueType the type of value that {@code m} is permitted to hold

Oreturn a dynamically typesafe view of the specified map

O@since 1.5

¥R X K X K X ¥ X %

*/
public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
Class<K> keyType,

65

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

3

VLTS

*

*/

Class<V> valueType) {

return new CheckedSortedMap<>(m, keyType, valueType);

@serial include

static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
implements SortedMap<K,V>, Serializable

{

3

private static final long serialVersionUID = 1599671320688067438L;

private final SortedMap<K, V> sm;

CheckedSortedMap (SortedMap<K, V> m,
Class<K> keyType, Class<V> valueType) {
super(m, keyType, valueType);

sm = m;

3

public Comparator<? super K> comparator() { return sm.comparator(); }

public K firstKey()
public K lastKey()

{ return sm.firstKey(); }
{ return sm.lastKey(); }

public SortedMap<K,V> subMap(K fromKey, K toKey) {
return checkedSortedMap (sm.subMap(fromKey, toKey),

}

keyType, valueType);

public SortedMap<K,V> headMap(K toKey) {
return checkedSortedMap(sm.headMap(toKey), keyType, valueType);

}

public SortedMap<K,V> tailMap(K fromKey) {
return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);

}

// Empty collections

Jk*

* Returns an iterator that has no elements. More precisely,

* %X X % %X %

<ul compact>

<1i>{@link Iterator#hasNext hasNext} always returns {@code

false/.

66

2082 # <1i>{@link Iterator#next next} always throws {@link

2083 # NoSuchElementException/.

2984 *

2985 # <1i>{@link Iterator#remove remove} always throws {@link

2086 # IllegalStateException/.

2087 *

2088 *

2989 *

2990 # <p>Implementations of this method are permitted, but not
2991 # required, to return the same object from multiple invocatiomns.
2992 *

2993 # @return an empty iterator

2094 * @since 1.7

2995 */

2996 @SuppressWarnings ("unchecked")

2097 public static <T> Iterator<T> emptyIterator() {

2998 return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;

2999 }

3000

3001 private static class Emptylterator<E> implements Iterator<E> {
3002 static final EmptyIterator<Object> EMPTY_ITERATOR

3003 = new EmptyIterator<>();

3004

3005 public boolean hasNext() { return false; }

3006 public E next() { throw new NoSuchElementException(); }

3007 public void remove() { throw new IllegalStateException(); }
3008 }

3009

3010 [k

3011 # Returns a list iterator that has no elements. More precisely,
3012 *

3013 * <ul compact>

3014 *

3015 # <1i>{@link Iterator#hasNext hasNext} and {@link

3016 # ListIterator#hasPrevious hasPrevious/ always return {@code
3017 * false /.

3018 *

3019 # <1i>{@link Iterator#next next} and {@link ListIterator#previous
3020 * previous} always throw {@link NoSuchElementException}.

3021 *

3022 # <1i>{@link Iterator#remove remove} and {@link ListIterator#set
3023 * set} always throw {@link IllegalStateException}.

3024 *

3025 # <1i>{@link ListIterator#add add} always throws {@link

3026 # UnsupportedOperationException/.

3027 *

67

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

<1i>{@link ListIterator#nextIndex nextIndex} always returns
* {@code 0}

*

<1i>{@link ListIterator#previousIndex previousIndex} always
returns {@code -1}.

*

*

*

<p>Implementations of this method are permitted, but not

required, to return the same object from multiple invocatiomns.
*

@return an empty list iterator

* @since 1.7

*/

@SuppressWarnings ("unchecked")

public static <T> ListIterator<T> emptyListIterator() {
return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;

}

private static class EmptyListIterator<E>
extends Emptylterator<E>
implements ListIterator<E>

static final EmptyListIterator<Object> EMPTY_ITERATOR
= new EmptyListIterator<>();

public boolean hasPrevious() { return false; }

public E previous() { throw new NoSuchElementException(); }
public int nextIndex() { return 0; }

public int previousIndex() { return -1; }

public void set(E e) { throw new IllegalStateException(); }
public void add(E e) { throw new UnsupportedOperationException(); }

Returns an enumeration that has no elements. More precisely,
<ul compact>

*
*

x*

*

<1i>{@link Enumeration#hasMoreElements hasMoreElements} always
* returns {@code false}.
*
*
x*

*
*

<1i> {@link Enumeration#nextElement nextElement} always throws
{@link NoSuchElementException} .

68

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

<p>Implementations of this method are permitted, but not
required, to return the same object from multiple invocations.

@return an empty enumeration
@since 1.7

* %X ¥ %X % %

*/
@SuppressWarnings ("unchecked")
public static <T> Enumeration<T> emptyEnumeration() {
return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
}

private static class EmptyEnumeration<E> implements Enumeration<E> {
static final EmptyEnumeration<Object> EMPTY_ENUMERATION
= new EmptyEnumeration<>();

public boolean hasMoreElements() { return false; }
public E nextElement() { throw new NoSuchElementException(); }
}

/% *
The empty set (immutable). This set is serializable.
*
* @see #emptySet ()
*/
@SuppressWarnings ("unchecked")
public static final Set EMPTY_SET = new EmptySet<>();

Jk*
Returns the empty set (immutable). This set is serializable.
Unlike the like-named field, this method is parameterized.

*
*

*

<p>This example illustrates the type-safe way to obtain an empty set:
* <pre>

* Set<Stringkgt; s = Collections. emptySet ();

* </pre>

Implementation note: Implementations of this method need not

create a separate <tt>Set</tt> object for each call. Using this

* method is likely to have comparable cost to using the like-named

field. (Unlike this method, the field does not provide type safety.)
*
*
*

Osee #EMPTY_SET
O@since 1.5
*/
@SuppressWarnings ("unchecked")
public static final <T> Set<T> emptySet() {

69

3120 return (Set<T>) EMPTY_SET;

3121 }

3122

3123 /**

3124 # @serial include

3125 */

3126 private static class EmptySet<E>

3127 extends AbstractSet<E>

3128 implements Serializable

3129 {

3130 private static final long serialVersionUID = 1582296315990362920L;
3131

3132 public Iterator<E> iterator() { return emptyIterator(); }
3133

3134 public int size() {return 0;}

3135 public boolean isEmpty() {return true;}

3136

3137 public boolean contains(Object obj) {return false;}

3138 public boolean containsAll(Collection<?> c¢) { return c.isEmpty(); }
3139

3140 public Object[] toArray() { return new Object[0]; }

3141

3142 public <T> T[] toArray(T[] a) {

3143 if (a.length > 0)

3144 a[0] = null;

3145 return a;

3146 }

3147

3148 // Preserves singleton property

3149 private Object readResolve() {

3150 return EMPTY_SET;

3151 }

3152 }

3153

3154 /¥

3155 # The empty list (immutable). This list is serializable.
3156 *

3157 # (Osee #emptyList ()

3158 */

3159 @SuppressWarnings ("unchecked")

3160 public static final List EMPTY_LIST = new EmptyList<>();

3161

3162 /**

3163 # Returns the empty list (immutable). This list is serializable.
3164 *

3165 # <p>This example illustrates the type-safe way to obtain an empty list:

70

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

* <pre>

* List<Stringkgt; s = Collections. emptyList ();

* </pre>

Implementation note: Implementations of this method need not

create a separate <tt>List</tt> object for each call. Using this
*# method is likely to have comparable cost to using the like-named

field. (Unlike this method, the field does not provide type safety.)
*

* @see #EMPTY_LIST

* @since 1.5

*/

@SuppressWarnings ("unchecked")

public static final <T> List<T> emptyList() {
return (List<T>) EMPTY_LIST;

}

VLS
@serial include
*/
private static class EmptyList<E>
extends AbstractList<E>
implements RandomAccess, Serializable {
private static final long serialVersionUID = 8842843931221139166L;

public Iterator<E> iterator() {
return emptyIterator();

}
public ListIterator<E> listIterator() {
return emptyListIterator();

3

public int size() {return 0;}
public boolean isEmpty() {return true;}

public boolean contains(Object obj) {return false;}
public boolean containsAll(Collection<?> c) { return c.isEmpty(); }

public Object[] toArray() { return new Object[0]; }
public <T> T[] toArray(T[] a) {
if (a.length > 0)
al0] = null;

return a;

}

public E get(int index) {

71

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

VETS

*

*
*

*/

throw new IndexOutOfBoundsException("Index: "+index);

}

public boolean equals(Object o) {
return (o instanceof List) && ((List<?>)o).isEmpty();
}

public int hashCode() { return 1; }
// Preserves singleton property
private Object readResolve() {

return EMPTY_LIST;
}

The empty map (immutable). This map is serializable.

Osee #emptyMap ()
@since 1.3

@SuppressWarnings ("unchecked")
public static final Map EMPTY_MAP = new EmptyMap<>(Q);

/K

¥ ¥ ¥ %X X ¥ ¥ %X X ¥ *x *x %

*/

Returns the empty map (immutable). This map is serializable.

<p>This example illustrates the type-safe way to obtain an empty set:
<pre>

Map<String, Date> s = Collections. emptyMap ();
</pre>
Implementation note: Implementations of this method need not
create a separate <tt>Map</tt> object for each call. Using this
method is likely to have comparable cost to using the like-named
field. (Unlike this method, the field does not provide type safety.)

Osee #EMPTY_MAP
@since 1.5

@SuppressWarnings ("unchecked")
public static final <K,V> Map<K,V> emptyMap() {

}

Jk*

*

return (Map<K,V>) EMPTY_MAP;

@serial include

72

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

*/
private static class EmptyMap<K,V>
extends AbstractMap<K,V>
implements Serializable

{
private static final long serialVersionUID = 6428348081105594320L;
public int size() {return 0;}
public boolean isEmpty() {return true;}
public boolean containsKey(Object key) {return false;}
public boolean containsValue(Object value) {return false;}
public V get(Object key) {return null;}
public Set<K> keySet() {return emptySet();}
public Collection<V> values() {return emptySet();}
public Set<Map.Entry<K,V>> entrySet() {return emptySet();}
public boolean equals(Object o) {
return (o instanceof Map) && ((Map<?,?>)o).isEmptyQ);
}
public int hashCode() {return 0;}
// Preserves singleton property
private Object readResolve() {
return EMPTY_MAP;
}
}

// Singleton collections

k%
Returns an immutable set containing only the specified object.
The returned set is serializable.
*
*# @param o the sole object to be stored in the returned set.
*

Oreturn an immutable set containing only the specified object.
*/

public static <T> Set<T> singleton(T o) {

return new SingletonSet<>(o);

3

static <E> Iterator<E> singletonIterator(final E e) {
return new Iterator<E>() {
private boolean hasNext = true;
public boolean hasNext() {
return hasNext;

73

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

}
public E next() {
if (hasNext) {
hasNext = false;
return e;
}
throw new NoSuchElementException();
}
public void remove() {
throw new UnsupportedOperationException();

}
}s
}
k%
@serial include
*/

private static class SingletonSet<E>
extends AbstractSet<E>
implements Serializable
private static final long serialVersionUID = 3193687207550431679L;
private final E element;

SingletonSet(E e) {element = e;}

public Iterator<E> iterator() {
return singletonIterator(element);

X
public int size() {return 1;}
public boolean contains(Object o) {return eq(o, element);}
VLT
Returns an immutable list containing only the specified object.
The returned list is serializable.
Gparam o the sole object to be stored in the returned list.

Oreturn an immutable list containing only the specified object.
@since 1.3

* % ¥ % % %

*/
public static <T> List<T> singletonList(T o) {
return new SingletonList<>(o);

74

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

}

/K
@serial include

*/

private static class SingletonList<E>
extends AbstractList<E>
implements RandomAccess, Serializable {

private static final long serialVersionUID = 3093736618740652951L;

private final E element;

SingletonList(E obj) {element = obj;}

public Iterator<E> iterator() {
return singletonIterator(element) ;

}

public int size()

{return 1;}

public boolean contains(Object obj) {return eq(obj, element);}

public E get(int index) {
if (index != 0)

throw new IndexOutOfBoundsException("Index: "+index+", Size:

return element;

k%

specified value.

mapping.
O@since 1.3

¥ X X X X X % %

*/

Returns an immutable map, mapping only the specified key to the

The returned map is serializable.

Oparam key the sole key to be stored in the returned map.
Oparam value the value to which the returned map maps <tt>key</tt>.
Oreturn an immutable map containing only the specified key-value

public static <K,V> Map<K,V> singletonMap(K key, V value) {
return new SingletonMap<>(key, value);

}

Jk*

#* @serial include

()

1”);

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

private static class SingletonMap<K,V>

extends AbstractMap<K,V>
implements Serializable {
private static final long serialVersionUID = -6979724477215052911L;

private final K k;
private final V v;

SingletonMap(K key, V value) {
k = key;
v = value;

}

public int size() {return 1;%}

public boolean isEmpty() {return false;}
public boolean containsKey(Object key) {return eq(key, k);2}

public boolean containsValue(Object value) {return eq(value, v);}

public V get(Object key) {return (eq(key, k) 7 v :

private transient Set<K> keySet = null;
private transient Set<Map.Entry<K,V>> entrySet = null;
private transient Collection<V> values = null;

public Set<K> keySet() {
if (keySet==null)
keySet = singleton(k);
return keySet;

}

public Set<Map.Entry<K,V>> entrySet() {
if (entrySet==null)
entrySet = Collections.<Map.Entry<K,V>>singleton(
new SimpleImmutableEntry<>(k, v));
return entrySet;

3

public Collection<V> values() {
if (values==null)
values = singleton(v);
return values;

76

null);}

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

}

// Miscellaneous

N
*
*

¥ ¥ ¥ %X X ¥ ¥ X X ¥ % * %

*/

3

VEZS

*

*/

private static class CopiesList<E>

Returns an immutable list consisting of <tt>n</tt> copies of the
specified object. The newly allocated data object is tiny (it contains
a single reference to the data object). This method is useful in
combination with the <tt>List.addAll</tt> method to grow lists.
The returned list is serializable.
Oparam n the number of elements in the returned list.
Gparam o the element to appear repeatedly in the returned list.
Oreturn an immutable list consisting of <tt>n</tt> copies of the
specified object.
Othrows IllegalArgumentException if {@code n < 0O}
@see List#addAll (Collection)
@see List#addAll (int, Collection)
public static <T> List<T> nCopies(int n, T o) {
if (n < 0)
throw new IllegalArgumentException("List length = " + n);

return new CopiesList<>(n, o0);

@serial include

extends AbstractList<E>
implements RandomAccess, Serializable

private static final long serialVersionUID = 2739099268398711800L;

final int n;
final E element;

CopiesList(int n, E e) {
assert n >= 0;
this.n = n;
element = e;

}

public int size() {
return n;

(s

3488 }

3489

3490 public boolean contains(Object obj) {

3491 return n != 0 &% eq(obj, element);

3492 }

3493

3494 public int indexOf (Object o) {

3495 return contains(o) 7 0 : -1;

3496 }

3497

3498 public int lastIndex0f(Object o) {

34990 return contains(o) ? n - 1 : -1;

3500 }

3501

3502 public E get(int index) {

3503 if (index < O || index >= n)

3504 throw new IndexOutOfBoundsException("Index: "+index+
3505 ", Size: "+4n);
3506 return element;

3507 }

3508

3509 public Object[] toArray() {

3510 final Object[] a = new Object[n];

3511 if (element != null)

3512 Arrays.fill(a, O, n, element);

3513 return a;

3514 }

3515

3516 public <T> T[] toArray(T[] a) {

3517 final int n = this.n;

3518 if (a.length < n) {

3519 a = (T[])java.lang.reflect.Array

3520 .newInstance(a.getClass() .getComponentType(), n);
3521 if (element != null)

3522 Arrays.fill(a, O, n, element);

3523 } else {

3524 Arrays.fill(a, O, n, element);

3525 if (a.length > n)

3526 a[n] = null;

3527 }

3528 return a;

3529 }

3530

3531 public List<E> subList(int fromIndex, int toIndex) {
3532 if (fromIndex < 0)

3533 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);

78

if (toIndex > n)
throw new IndexOutOfBoundsException("toIndex = " + tolIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > tolIndex(" + tolIndex + ")");
return new CopiesList<>(toIndex - fromIndex, element);

Jk*
Returns a comparator that imposes the reverse of the natural
ordering on a collection of objects that implement the
{@code Comparable} interface. (The natural ordering is the ordering
imposed by the objects’' own {@code compareTo} method.) This enables a
simple idiom for sorting (or maintaining) collections (or arrays) of
objects that implement the {@code Comparable} interface in
reverse-natural-order. For example, suppose {@code a} is an array of
strings. Then: <pre>

Arrays. sort (a, Collections.reverseOrder ());
</pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>

The returned comparator is serializable.

Oreturn A comparator that imposes the reverse of the <i>natural
ordering</i> on a collection of objects that implement
the <tt>Comparable</tt> interface.

Osee Comparable

¥ OX X X X X X X X X X X X X X %X %

*/
public static <T> Comparator<T> reverseOrder() {
return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3

VLS
*# @serial include
*/
private static class ReverseComparator
implements Comparator<Comparable<Object>>, Serializable {

private static final long serialVersionUID = 7207038068494060240L;

static final ReverseComparator REVERSE_ORDER
= new ReverseComparator();

public int compare(Comparable<Object> cl, Comparable<Object> c2) {

return c2.compareTo(cl);

3

79

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

private Object readResolve() { return reverseOrder(); }

VLTS

Returns a comparator that imposes the reverse ordering of the specified
comparator. If the specified comparator is {@code null}, this method is
equivalent to {@link #reverseOrder ()} (in other words, it returns a
comparator that imposes the reverse of the natural ordering on
a collection of objects that implement the Comparable interface).

<p>The returned comparator is serializable (assuming the specified
comparator is also serializable or {@code nulll}).

Oparam cmp a comparator who's ordering is to be reversed by the returned
comparator or {@code null}
Oreturn A comparator that imposes the reverse ordering of the
specified comparator.
O@since 1.5

¥ X X X X X X X X X X X X %

*/
public static <T> Comparator<T> reverseOrder (Comparator<T> cmp) {
if (cmp == null)
return reverseOrder();

if (cmp instanceof ReverseComparator?2)
return ((ReverseComparator2<T>)cmp) .cmp;

return new ReverseComparator2<>(cmp) ;

3

/R
@serial include
*/
private static class ReverseComparator2<T> implements Comparator<T>,
Serializable
{
private static final long serialVersionUID = 4374092139857L;

Jk*
*# The comparator specified in the static factory. This will never
* be null, as the static factory returns a ReverseComparator
instance if its argument is null.
*
* (Oserial
*/

final Comparator<T> cmp;

80

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

ReverseComparator2(Comparator<T> cmp) {
assert cmp != null;
this.cmp = cmp;

}

public int compare(T t1, T t2) {
return cmp.compare(t2, t1);

3

public boolean equals(Object o) {
return (o == this) ||
(o instanceof ReverseComparator2 &&
cmp.equals (((ReverseComparator2)o) .cmp)) ;

}

public int hashCode() {
return cmp.hashCode() ~ Integer.MIN_VALUE;
X
}

J**

*# Returns an enumeration over the specified collection. This provides
interoperability with legacy APIs that require an enumeration
as input.

Oparam c¢ the collection for which an enumeration is to be returned.
Oreturn an enumeration over the specified collection.
Osee Enumeration

* %X X % %X %

*/
public static <T> Enumeration<T> enumeration(final Collection<T> c) {
return new Enumeration<T>() {
private final Iterator<T> i = c.iterator();

public boolean hasMoreElements() {
return i.hasNext();

}

public T nextElement() {
return i.next();

}
};

Jk*

* Returns an array list containing the elements returned by the

81

3672 # specified enumeration in the order they are returned by the
3673 # enumeration. This method provides interoperability between
3674 *# legacy APIs that return enumerations and new APIs that require
3675 * collections.

3676 *

3677 *# @param e enumeration providing elements for the returned
3678 * array list

3679 # @return an array list containing the elements returned

3680 * by the specified enumeration.

3681 * @since 1.4

3682 # @see Enumeration

3683 * @see ArrayList

3684 */

3685 public static <T> ArrayList<T> list(Enumeration<T> e) {

3686 ArraylList<T> 1 = new ArrayList<>();

3687 while (e.hasMoreElements())

3688 1.add(e.nextElement());

3689 return 1;

3690 }

3691

3692 /**

3693 *# Returns true if the specified arguments are equal, or both null.
3694 */

3695 static boolean eq(Object ol, Object 02) {

3696 return ol==null 7 o02==null : ol.equals(02);

3697 }

3698

3699 /

3700 *# Returns the number of elements in the specified collection equal to the
3701 # specified object. More formally, returns the number of elements
3702 # <tt>e</tt> in the collection such that

3703 # <tt>(o == null ? e == null : o.equals(e))</tt>.

3704 *

3705 *# @param c the collection in which to determine the frequency
3706 * of <tt>o</tt>

3707 *# @param o the object whose frequency is to be determined

3708 * @throws NullPointerException if <tt>c</tt> is null

3709 * @since 1.5

3710 */

3711 public static int frequency(Collection<?> c, Object o) {

3712 int result = 0;

3713 if (o == null) {

3714 for (Object e : c)

3715 if (e == null)

3716 result++;

3717 } else {

82

3718 for (Object e : c)

3719 if (o.equals(e))
3720 result++;
3721 }

3722 return result;

3723 }

3724

3725 /**

Returns {@code true} if the two specified collections have no
elements in common.

3726
3727
3728
<p>Care must be exercised if this method is used on collections that
do not comply with the general contract for {@code Collection}.

Implementations may elect to iterate over either collection and test

3729
3730
3731
3732 for containment in the other collection (or to perform any equivalent
computation). If either collection uses a nonstandard equality test
(as does a {0@link SortedSet} whose ordering is not compatible with
equals, or the key set of an {@link IdentityHashMap}), both
collections must use the same nonstandard equality test, or the

result of this method is undefined.

3733
3734
3735
3736
3737
3738
3739 <p>Care must also be exercised when using collections that have

restrictions on the elements that they may contain. Collection

implementations are allowed to throw exceptions for any operation
involving elements they deem ineligible. For absolute safety the

3740
3741
3742
3743 specified collections should contain only elements which are
3744 eligible elements for both collections.
3745
3746 <p>Note that it is permissible to pass the same collection in both
3747 parameters, in which case the method will return {@code true} if and
3748 only if the collection is empty.
3749
Oparam c1 a collection

Oparam c2 a collection

3750

Oreturn {@code true} if the two specified collections have no

elements in common.

Othrows NullPointerException if either collection is {@code null}.

Othrows NullPointerException if one collection contains a {@code null}
element and {@code null} is not an eligible element for the other collection.
(optional)

Othrows ClassCastException if one collection contains an element that is

of a type which is ineligible for the other collection.

(optional)

O@since 1.5

3758

3759

3760

¥ X ¥ X X ¥ X X X ¥ X X ¥ ¥ X X ¥ X X ¥ ¥ X X ¥ ¥ X ¥ ¥ X X ¥ ¥ X *x * *

3761
3762 */
3763 public static boolean disjoint(Collection<?> c1, Collection<?> c2) {

83

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

// The collection to be used for contains(). Preference is given to
// the collection who's contains() has lower O0() complezity.
Collection<?> contains = c2;

// The collection to be titerated. If the collections' contains() impl
// are of different 0() complexzity, the collection with slower

// contains() will be used for iteration. For collections who's

// contains() are of the same complexity then best performance is

// achieved by tterating the smaller collection.

Collection<?> iterate = ci;

// Performance optimization cases. The heuristics:
// 1. Generally iterate over cl.
// 2. If c1 is a Set then iterate over c2.
// 3. If either collection s empty then result is always true.
// 4. Iterate over the smaller Collection.
if (c1 instanceof Set) {
// Use c1 for contains as a Set's contains() is expected to perform
// better than O0(N/2)
iterate = c2;
contains = cl;
} else if (!(c2 instanceof Set)) {
// Both are mere Collections. Iterate over smaller collection.
// Example: If cl contains 3 elements and c2 contains 50 elements and
// assuming contains() requires ceiling(N/2) comparisons then
// checking for all cl elements in c2 would require 75 comparisons
// (3 * ceiling(50/2)) wvs. checking all c2 elements in cl requiring
// 100 comparisons (50 * ceiling(3/2)).
int clsize = cl.size();
int c2size = c2.size();
if (clsize == 0 || c2size == 0) {
// At least one collection is empty. Nothing will match.
return true;

}

if (clsize > c2size) {
iterate = c2;
contains = cl;

for (Object e : iterate) {
if (contains.contains(e)) {
// Found a common element. Collections are not disjoint.
return false;

84

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3855

// No common elements were found.
return true;

}

/**

Adds all of the specified elements to the specified collection.
Elements to be added may be specified individually or as an array.

The behavior of this convenience method is identical to that of
<tt>c.addAll (Arrays. asList (elements)) </tt>, but this method is likely
to run significantly faster under most implementations.

<p>When elements are specified individually, this method provides a
convenient way to add a few elements to an existing collection:
<pre>

Collections. addAll (flavors, "Peaches 'n Plutonium”, "Rocky Racoon”);
</pre>

*
*
*
*
x*
*
*
*
*
*
x*
*
@param ¢ the collection into which <tt>elements</tt> are to be inserted
* @param elements the elements to insert into <tt>c</tt>
Oreturn <tt>true</tt> if the collection changed as a result of the call
@throws UnsupportedUperationException if <tt>c</tt> does not support
* the <tt>add</tt> operation
Othrows NullPointerException if <tt>elements</tt> contains one or more
* null values and <tt>c</tt> does not permit null elements, or
* if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
@throws IllegalArgumentException if some property of a value in
* <tt>elements</tt> prevents it from being added to <tt>c</tt>
@see Collection#addAll(Collection)
* @since 1.5
*/

@SafeVarargs
public static <T> boolean addAll(Collection<? super T> c, T... elements) {

boolean result = false;

for (T element : elements)

result |= c.add(element);
return result;

Jk*

Returns a set backed by the specified map. The resulting set displays
the same ordering, concurrency, and performance characteristics as the
backing map. In essence, this factory method provides a {@link Set}
implementation corresponding to any {@link Map} implementation. There
is no need to use this method on a {@link Map} implementation that
already has a corresponding {@link Set} implementation (such as {@link

* % X % %X %

85

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

HashMap/} or {@link TreeMap}).

<p>Each method invocation on the set returned by this method results in
exactly one method invocation on the backing map or its <tt>keySet</tt>
view, with one exception. The <tt>addAl1l</tt> method is implemented
as a sequence of <tt>put</tt> invocations on the backing map.

<p>The specified map must be empty at the time this method is invoked,
and should not be accessed directly after this method returns. These
conditions are ensured if the map is created empty, passed directly
to this method, and no reference to the map is retained, as illustrated
in the following code fragment:
<pre>

Set<0bject> weakHashSet = Collections. newSetFromMap (

new WeakHashMap<0Object, Boolean> ());

</pre>

Oparam map the backing map

Greturn the set backed by the map

Othrows IllegalArgumentException if <tt>map</tt> is not empty
Osince 1.6

¥ ¥ %X X ¥ X X ¥ ¥ X X ¥ ¥ X X ¥ X X * * *x

*/
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
return new SetFromMap<>(map) ;

3

/*%*
@serial include
*/
private static class SetFromMap<E> extends AbstractSet<E>
implements Set<E>, Serializable
{
private final Map<E, Boolean> m; // The backing map
private transient Set<E> s; // Its keySet

SetFromMap (Map<E, Boolean> map) {
if (!'map.isEmpty())
throw new IllegalArgumentException("Map is non-empty");
= map;

s = map.keySet();
}
public void clear() { m.clear(); }
public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsKey(o); }

86

3902 public boolean remove(Object o) { return m.remove(o) != null; }

3903 public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3904 public Iterator<E> iterator() { return s.iterator(); }

3905 public Object[] toArray() { return s.toArray(Q); }

3906 public <T> T[] toArray(T[] a) { return s.toArray(a); }

3907 public String toString() { return s.toString(); }

3908 public int hashCode () { return s.hashCode(); }

3909 public boolean equals(Object o) { return o == this || s.equals(o); }
3910 public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3911 public boolean removeAll(Collection<?> c) {return s.removeAll(c);}
3912 public boolean retainAll(Collection<?> c) {return s.retainAll(c);}
3913 // addAll is the only inherited implementation

3914

3915 private static final long serialVersionUID = 2454657854757543876L;
3916

3917 private void readObject(java.io.ObjectInputStream stream)

3918 throws IOException, ClassNotFoundException

3919 {

3920 stream.defaultReadObject () ;

3921 s = m.keySet();

3922 }

3923 }

3924

3925 [k

3926 #* Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3927 # {0link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,

3928 * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This

39290 *# view can be useful when you would like to use a method

3930 * requiring a <tt>Queue</tt> but you need Lifo ordering.

3931 *

3932 # <p>Each method invocation on the queue returned by this method

3933 # results in exactly one method invocation on the backing deque, with
3934 # one exception. The {@link Queue#addAll addAll} method is

3935 # implemented as a sequence of {@link Deque#addFirst addFirst}

3936 *# invocations on the backing deque.

3937 *

3938 * @param deque the deque

3939 *# @return the queue

3940 * @since 1.6

3941 */

3942 public static <T> Queue<T> asLifoQueue(Deque<T> deque) {

3943 return new AsLIFOQueue<>(deque);

3944 }

3945

3946 [

3947 *# @serial include

87

3948 */

3949 static class AsLIFOQueue<E> extends AbstractQueue<E>

3950 implements Queue<E>, Serializable {

3951 private static final long serialVersionUID = 1802017725587941708L;
3952 private final Deque<E> q;

3953 AsLIFOQueue (Deque<E> q) { this.q = q; }

3954 public boolean add(E e) { q.addFirst(e); return true; }
3955 public boolean offer(E e) { return q.offerFirst(e); }

3956 public E poll() { return q.pollFirst(); }

3957 public E remove() { return q.removeFirst(); }

3958 public E peek() { return q.peekFirst(); }

3959 public E element() { return q.getFirst(); }

3960 public void clear() { g.clear();

3961 public int size() { return q.size(Q); }

3962 public boolean isEmpty() { return q.isEmpty(); }

3963 public boolean contains(Object o) { return q.contains(o); }

3964 public boolean remove(Object o) { return q.remove(o); }

3065 public Iterator<E> iterator() { return q.iterator(); %}

3966 public Object[] toArray() { return q.toArray(); }

3967 public <T> T[] toArray(T[] a) { return q.toArray(a); }

3968 public String toString() { return q.toString(); }

3969 public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3970 public boolean removeAll(Collection<?> c) {return q.removeAll(c);}
3971 public boolean retainAll(Collection<?> c) {return q.retainAll(c);?}
3972 // We use inherited addAll; forwarding addAll would be wrong

3973 }

3974 }

88

	Código fonte em PDF
	Collections
	LinkedList

