
Código fonte em PDF
Collections
Aqui como incluir apenas um trecho do código fonte, especificando linha de início
e de fim.

private static <T>
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
{

int low = 0;
int high = list.size()-1;

while (low <= high) {
int mid = (low + high) >>> 1;
Comparable<? super T> midVal = list.get(mid);
int cmp = midVal.compareTo(key);

if (cmp < 0)
low = mid + 1;

else if (cmp > 0)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found

}

Desta vez, inclui o mesmo trecho, e adiciona a numeração de linhas.

264 private static <T>
265 int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
266 {
267 int low = 0;
268 int high = list.size()-1;
269

270 while (low <= high) {
271 int mid = (low + high) >>> 1;
272 Comparable<? super T> midVal = list.get(mid);
273 int cmp = midVal.compareTo(key);
274

275 if (cmp < 0)
276 low = mid + 1;
277 else if (cmp > 0)
278 high = mid - 1;
279 else
280 return mid; // key found

1

281 }
282 return -(low + 1); // key not found
283 }

LinkedList
Por fim, colocar o arquivo completo é o mais simples. Contudo, é importante
olhar como resolver o caso de linhas muito longas.

1 /*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.

10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25

26 package java.util;
27 import java.io.Serializable;
28 import java.io.ObjectOutputStream;
29 import java.io.IOException;
30 import java.lang.reflect.Array;
31

32 /**
33 * This class consists exclusively of static methods that operate on or return
34 * collections. It contains polymorphic algorithms that operate on
35 * collections, " wrappers", which return a new collection backed by a
36 * specified collection, and a few other odds and ends.
37 *

2

38 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
39 * if the collections or class objects provided to them are null.
40 *
41 * <p>The documentation for the polymorphic algorithms contained in this class
42 * generally includes a brief description of the <i>implementation</i>. Such
43 * descriptions should be regarded as <i>implementation notes</i>, rather than
44 * parts of the <i>specification</i>. Implementors should feel free to
45 * substitute other algorithms, so long as the specification itself is adhered
46 * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
47 * a mergesort, but it does have to be <i>stable</i>.)
48 *
49 * <p>The " destructive" algorithms contained in this class, that is, the
50 * algorithms that modify the collection on which they operate, are specified
51 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
52 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
53 * method. These algorithms may, but are not required to, throw this
54 * exception if an invocation would have no effect on the collection. For
55 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
56 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
57 *
58 * <p>This class is a member of the
59 *
60 * Java Collections Framework.
61 *
62 * @author Josh Bloch
63 * @author Neal Gafter
64 * @see Collection
65 * @see Set
66 * @see List
67 * @see Map
68 * @since 1.2
69 */
70

71 public class Collections {
72 // Suppresses default constructor, ensuring non-instantiability.
73 private Collections() {
74 }
75

76 // Algorithms
77

78 /*
79 * Tuning parameters for algorithms - Many of the List algorithms have
80 * two implementations, one of which is appropriate for RandomAccess
81 * lists, the other for "sequential." Often, the random access variant
82 * yields better performance on small sequential access lists. The
83 * tuning parameters below determine the cutoff point for what constitutes

3

84 * a "small" sequential access list for each algorithm. The values below
85 * were empirically determined to work well for LinkedList. Hopefully
86 * they should be reasonable for other sequential access List
87 * implementations. Those doing performance work on this code would
88 * do well to validate the values of these parameters from time to time.
89 * (The first word of each tuning parameter name is the algorithm to which
90 * it applies.)
91 */
92 private static final int BINARYSEARCH_THRESHOLD = 5000;
93 private static final int REVERSE_THRESHOLD = 18;
94 private static final int SHUFFLE_THRESHOLD = 5;
95 private static final int FILL_THRESHOLD = 25;
96 private static final int ROTATE_THRESHOLD = 100;
97 private static final int COPY_THRESHOLD = 10;
98 private static final int REPLACEALL_THRESHOLD = 11;
99 private static final int INDEXOFSUBLIST_THRESHOLD = 35;

100

101 /**
102 * Sorts the specified list into ascending order, according to the
103 * {@linkplain Comparable natural ordering} of its elements.
104 * All elements in the list must implement the {@link Comparable}
105 * interface. Furthermore, all elements in the list must be
106 * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
107 * must not throw a {@code ClassCastException} for any elements
108 * {@code e1} and {@code e2} in the list).
109 *
110 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will
111 * not be reordered as a result of the sort.
112 *
113 * <p>The specified list must be modifiable, but need not be resizable.
114 *
115 * <p>Implementation note: This implementation is a stable, adaptive,
116 * iterative mergesort that requires far fewer than n lg(n) comparisons
117 * when the input array is partially sorted, while offering the
118 * performance of a traditional mergesort when the input array is
119 * randomly ordered. If the input array is nearly sorted, the
120 * implementation requires approximately n comparisons. Temporary
121 * storage requirements vary from a small constant for nearly sorted
122 * input arrays to n/2 object references for randomly ordered input
123 * arrays.
124 *
125 * <p>The implementation takes equal advantage of ascending and
126 * descending order in its input array, and can take advantage of
127 * ascending and descending order in different parts of the same
128 * input array. It is well- suited to merging two or more sorted arrays:
129 * simply concatenate the arrays and sort the resulting array.

4

130 *
131 * <p>The implementation was adapted from Tim Peters' s list sort for Python
132 * (
133 * TimSort). It uses techiques from Peter McIlroy' s " Optimistic
134 * Sorting and Information Theoretic Complexity", in Proceedings of the
135 * Fourth Annual ACM- SIAM Symposium on Discrete Algorithms, pp 467-474,
136 * January 1993.
137 *
138 * <p>This implementation dumps the specified list into an array, sorts
139 * the array, and iterates over the list resetting each element
140 * from the corresponding position in the array. This avoids the
141 * n² log(n) performance that would result from attempting
142 * to sort a linked list in place.
143 *
144 * @param list the list to be sorted.
145 * @throws ClassCastException if the list contains elements that are not
146 * <i>mutually comparable</i> (for example, strings and integers).
147 * @throws UnsupportedOperationException if the specified list' s
148 * list- iterator does not support the {@code set} operation.
149 * @throws IllegalArgumentException (optional) if the implementation
150 * detects that the natural ordering of the list elements is
151 * found to violate the {@link Comparable} contract
152 */
153 public static <T extends Comparable<? super T>> void sort(List<T> list) {
154 Object[] a = list.toArray();
155 Arrays.sort(a);
156 ListIterator<T> i = list.listIterator();
157 for (int j=0; j<a.length; j++) {
158 i.next();
159 i.set((T)a[j]);
160 }
161 }
162

163 /**
164 * Sorts the specified list according to the order induced by the
165 * specified comparator. All elements in the list must be <i>mutually
166 * comparable</i> using the specified comparator (that is,
167 * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
168 * for any elements {@code e1} and {@code e2} in the list).
169 *
170 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will
171 * not be reordered as a result of the sort.
172 *
173 * <p>The specified list must be modifiable, but need not be resizable.
174 *
175 * <p>Implementation note: This implementation is a stable, adaptive,

5

176 * iterative mergesort that requires far fewer than n lg(n) comparisons
177 * when the input array is partially sorted, while offering the
178 * performance of a traditional mergesort when the input array is
179 * randomly ordered. If the input array is nearly sorted, the
180 * implementation requires approximately n comparisons. Temporary
181 * storage requirements vary from a small constant for nearly sorted
182 * input arrays to n/2 object references for randomly ordered input
183 * arrays.
184 *
185 * <p>The implementation takes equal advantage of ascending and
186 * descending order in its input array, and can take advantage of
187 * ascending and descending order in different parts of the same
188 * input array. It is well- suited to merging two or more sorted arrays:
189 * simply concatenate the arrays and sort the resulting array.
190 *
191 * <p>The implementation was adapted from Tim Peters' s list sort for Python
192 * (
193 * TimSort). It uses techiques from Peter McIlroy' s " Optimistic
194 * Sorting and Information Theoretic Complexity", in Proceedings of the
195 * Fourth Annual ACM- SIAM Symposium on Discrete Algorithms, pp 467-474,
196 * January 1993.
197 *
198 * <p>This implementation dumps the specified list into an array, sorts
199 * the array, and iterates over the list resetting each element
200 * from the corresponding position in the array. This avoids the
201 * n² log(n) performance that would result from attempting
202 * to sort a linked list in place.
203 *
204 * @param list the list to be sorted.
205 * @param c the comparator to determine the order of the list. A
206 * {@code null} value indicates that the elements' <i>natural
207 * ordering</i> should be used.
208 * @throws ClassCastException if the list contains elements that are not
209 * <i>mutually comparable</i> using the specified comparator.
210 * @throws UnsupportedOperationException if the specified list' s
211 * list- iterator does not support the {@code set} operation.
212 * @throws IllegalArgumentException (optional) if the comparator is
213 * found to violate the {@link Comparator} contract
214 */
215 public static <T> void sort(List<T> list, Comparator<? super T> c) {
216 Object[] a = list.toArray();
217 Arrays.sort(a, (Comparator)c);
218 ListIterator i = list.listIterator();
219 for (int j=0; j<a.length; j++) {
220 i.next();
221 i.set(a[j]);

6

222 }
223 }
224

225

226 /**
227 * Searches the specified list for the specified object using the binary
228 * search algorithm. The list must be sorted into ascending order
229 * according to the {@linkplain Comparable natural ordering} of its
230 * elements (as by the {@link #sort(List)} method) prior to making this
231 * call. If it is not sorted, the results are undefined. If the list
232 * contains multiple elements equal to the specified object, there is no
233 * guarantee which one will be found.
234 *
235 * <p>This method runs in log(n) time for a " random access" list (which
236 * provides near- constant- time positional access). If the specified list
237 * does not implement the {@link RandomAccess} interface and is large,
238 * this method will do an iterator- based binary search that performs
239 * O(n) link traversals and O(log n) element comparisons.
240 *
241 * @param list the list to be searched.
242 * @param key the key to be searched for.
243 * @return the index of the search key, if it is contained in the list;
244 * otherwise, <tt>(-(<i>insertion point</i>) - 1) </tt>. The
245 * <i>insertion point</i> is defined as the point at which the
246 * key would be inserted into the list: the index of the first
247 * element greater than the key, or <tt>list. size() </tt> if all
248 * elements in the list are less than the specified key. Note
249 * that this guarantees that the return value will be >= 0 if
250 * and only if the key is found.
251 * @throws ClassCastException if the list contains elements that are not
252 * <i>mutually comparable</i> (for example, strings and
253 * integers), or the search key is not mutually comparable
254 * with the elements of the list.
255 */
256 public static <T>
257 int binarySearch(List<? extends Comparable<? super T>> list, T key) {
258 if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
259 return Collections.indexedBinarySearch(list, key);
260 else
261 return Collections.iteratorBinarySearch(list, key);
262 }
263

264 private static <T>
265 int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
266 {
267 int low = 0;

7

268 int high = list.size()-1;
269

270 while (low <= high) {
271 int mid = (low + high) >>> 1;
272 Comparable<? super T> midVal = list.get(mid);
273 int cmp = midVal.compareTo(key);
274

275 if (cmp < 0)
276 low = mid + 1;
277 else if (cmp > 0)
278 high = mid - 1;
279 else
280 return mid; // key found
281 }
282 return -(low + 1); // key not found
283 }
284

285 private static <T>
286 int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
287 {
288 int low = 0;
289 int high = list.size()-1;
290 ListIterator<? extends Comparable<? super T>> i = list.listIterator();
291

292 while (low <= high) {
293 int mid = (low + high) >>> 1;
294 Comparable<? super T> midVal = get(i, mid);
295 int cmp = midVal.compareTo(key);
296

297 if (cmp < 0)
298 low = mid + 1;
299 else if (cmp > 0)
300 high = mid - 1;
301 else
302 return mid; // key found
303 }
304 return -(low + 1); // key not found
305 }
306

307 /**
308 * Gets the ith element from the given list by repositioning the specified
309 * list listIterator.
310 */
311 private static <T> T get(ListIterator<? extends T> i, int index) {
312 T obj = null;
313 int pos = i.nextIndex();

8

314 if (pos <= index) {
315 do {
316 obj = i.next();
317 } while (pos++ < index);
318 } else {
319 do {
320 obj = i.previous();
321 } while (--pos > index);
322 }
323 return obj;
324 }
325

326 /**
327 * Searches the specified list for the specified object using the binary
328 * search algorithm. The list must be sorted into ascending order
329 * according to the specified comparator (as by the
330 * {@link #sort(List, Comparator) sort(List, Comparator)}
331 * method), prior to making this call. If it is
332 * not sorted, the results are undefined. If the list contains multiple
333 * elements equal to the specified object, there is no guarantee which one
334 * will be found.
335 *
336 * <p>This method runs in log(n) time for a " random access" list (which
337 * provides near- constant- time positional access). If the specified list
338 * does not implement the {@link RandomAccess} interface and is large,
339 * this method will do an iterator- based binary search that performs
340 * O(n) link traversals and O(log n) element comparisons.
341 *
342 * @param list the list to be searched.
343 * @param key the key to be searched for.
344 * @param c the comparator by which the list is ordered.
345 * A <tt>null</tt> value indicates that the elements'
346 * {@linkplain Comparable natural ordering} should be used.
347 * @return the index of the search key, if it is contained in the list;
348 * otherwise, <tt>(-(<i>insertion point</i>) - 1) </tt>. The
349 * <i>insertion point</i> is defined as the point at which the
350 * key would be inserted into the list: the index of the first
351 * element greater than the key, or <tt>list. size() </tt> if all
352 * elements in the list are less than the specified key. Note
353 * that this guarantees that the return value will be >= 0 if
354 * and only if the key is found.
355 * @throws ClassCastException if the list contains elements that are not
356 * <i>mutually comparable</i> using the specified comparator,
357 * or the search key is not mutually comparable with the
358 * elements of the list using this comparator.
359 */

9

360 public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
361 if (c==null)
362 return binarySearch((List) list, key);
363

364 if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
365 return Collections.indexedBinarySearch(list, key, c);
366 else
367 return Collections.iteratorBinarySearch(list, key, c);
368 }
369

370 private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
371 int low = 0;
372 int high = l.size()-1;
373

374 while (low <= high) {
375 int mid = (low + high) >>> 1;
376 T midVal = l.get(mid);
377 int cmp = c.compare(midVal, key);
378

379 if (cmp < 0)
380 low = mid + 1;
381 else if (cmp > 0)
382 high = mid - 1;
383 else
384 return mid; // key found
385 }
386 return -(low + 1); // key not found
387 }
388

389 private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
390 int low = 0;
391 int high = l.size()-1;
392 ListIterator<? extends T> i = l.listIterator();
393

394 while (low <= high) {
395 int mid = (low + high) >>> 1;
396 T midVal = get(i, mid);
397 int cmp = c.compare(midVal, key);
398

399 if (cmp < 0)
400 low = mid + 1;
401 else if (cmp > 0)
402 high = mid - 1;
403 else
404 return mid; // key found
405 }

10

406 return -(low + 1); // key not found
407 }
408

409 private interface SelfComparable extends Comparable<SelfComparable> {}
410

411

412 /**
413 * Reverses the order of the elements in the specified list. <p>
414 *
415 * This method runs in linear time.
416 *
417 * @param list the list whose elements are to be reversed.
418 * @throws UnsupportedOperationException if the specified list or
419 * its list- iterator does not support the <tt>set</tt> operation.
420 */
421 public static void reverse(List<?> list) {
422 int size = list.size();
423 if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
424 for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
425 swap(list, i, j);
426 } else {
427 ListIterator fwd = list.listIterator();
428 ListIterator rev = list.listIterator(size);
429 for (int i=0, mid=list.size()>>1; i<mid; i++) {
430 Object tmp = fwd.next();
431 fwd.set(rev.previous());
432 rev.set(tmp);
433 }
434 }
435 }
436

437 /**
438 * Randomly permutes the specified list using a default source of
439 * randomness. All permutations occur with approximately equal
440 * likelihood. <p>
441 *
442 * The hedge " approximately" is used in the foregoing description because
443 * default source of randomness is only approximately an unbiased source
444 * of independently chosen bits. If it were a perfect source of randomly
445 * chosen bits, then the algorithm would choose permutations with perfect
446 * uniformity. <p>
447 *
448 * This implementation traverses the list backwards, from the last element
449 * up to the second, repeatedly swapping a randomly selected element into
450 * the " current position". Elements are randomly selected from the
451 * portion of the list that runs from the first element to the current

11

452 * position, inclusive. <p>
453 *
454 * This method runs in linear time. If the specified list does not
455 * implement the {@link RandomAccess} interface and is large, this
456 * implementation dumps the specified list into an array before shuffling
457 * it, and dumps the shuffled array back into the list. This avoids the
458 * quadratic behavior that would result from shuffling a " sequential
459 * access" list in place.
460 *
461 * @param list the list to be shuffled.
462 * @throws UnsupportedOperationException if the specified list or
463 * its list- iterator does not support the <tt>set</tt> operation.
464 */
465 public static void shuffle(List<?> list) {
466 Random rnd = r;
467 if (rnd == null)
468 r = rnd = new Random();
469 shuffle(list, rnd);
470 }
471 private static Random r;
472

473 /**
474 * Randomly permute the specified list using the specified source of
475 * randomness. All permutations occur with equal likelihood
476 * assuming that the source of randomness is fair. <p>
477 *
478 * This implementation traverses the list backwards, from the last element
479 * up to the second, repeatedly swapping a randomly selected element into
480 * the " current position". Elements are randomly selected from the
481 * portion of the list that runs from the first element to the current
482 * position, inclusive. <p>
483 *
484 * This method runs in linear time. If the specified list does not
485 * implement the {@link RandomAccess} interface and is large, this
486 * implementation dumps the specified list into an array before shuffling
487 * it, and dumps the shuffled array back into the list. This avoids the
488 * quadratic behavior that would result from shuffling a " sequential
489 * access" list in place.
490 *
491 * @param list the list to be shuffled.
492 * @param rnd the source of randomness to use to shuffle the list.
493 * @throws UnsupportedOperationException if the specified list or its
494 * list- iterator does not support the <tt>set</tt> operation.
495 */
496 public static void shuffle(List<?> list, Random rnd) {
497 int size = list.size();

12

498 if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
499 for (int i=size; i>1; i--)
500 swap(list, i-1, rnd.nextInt(i));
501 } else {
502 Object arr[] = list.toArray();
503

504 // Shuffle array
505 for (int i=size; i>1; i--)
506 swap(arr, i-1, rnd.nextInt(i));
507

508 // Dump array back into list
509 ListIterator it = list.listIterator();
510 for (int i=0; i<arr.length; i++) {
511 it.next();
512 it.set(arr[i]);
513 }
514 }
515 }
516

517 /**
518 * Swaps the elements at the specified positions in the specified list.
519 * (If the specified positions are equal, invoking this method leaves
520 * the list unchanged.)
521 *
522 * @param list The list in which to swap elements.
523 * @param i the index of one element to be swapped.
524 * @param j the index of the other element to be swapped.
525 * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
526 * is out of range (i < 0 || i >= list. size()
527 * || j < 0 || j >= list. size()).
528 * @since 1.4
529 */
530 public static void swap(List<?> list, int i, int j) {
531 final List l = list;
532 l.set(i, l.set(j, l.get(i)));
533 }
534

535 /**
536 * Swaps the two specified elements in the specified array.
537 */
538 private static void swap(Object[] arr, int i, int j) {
539 Object tmp = arr[i];
540 arr[i] = arr[j];
541 arr[j] = tmp;
542 }
543

13

544 /**
545 * Replaces all of the elements of the specified list with the specified
546 * element. <p>
547 *
548 * This method runs in linear time.
549 *
550 * @param list the list to be filled with the specified element.
551 * @param obj The element with which to fill the specified list.
552 * @throws UnsupportedOperationException if the specified list or its
553 * list- iterator does not support the <tt>set</tt> operation.
554 */
555 public static <T> void fill(List<? super T> list, T obj) {
556 int size = list.size();
557

558 if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
559 for (int i=0; i<size; i++)
560 list.set(i, obj);
561 } else {
562 ListIterator<? super T> itr = list.listIterator();
563 for (int i=0; i<size; i++) {
564 itr.next();
565 itr.set(obj);
566 }
567 }
568 }
569

570 /**
571 * Copies all of the elements from one list into another. After the
572 * operation, the index of each copied element in the destination list
573 * will be identical to its index in the source list. The destination
574 * list must be at least as long as the source list. If it is longer, the
575 * remaining elements in the destination list are unaffected. <p>
576 *
577 * This method runs in linear time.
578 *
579 * @param dest The destination list.
580 * @param src The source list.
581 * @throws IndexOutOfBoundsException if the destination list is too small
582 * to contain the entire source List.
583 * @throws UnsupportedOperationException if the destination list' s
584 * list- iterator does not support the <tt>set</tt> operation.
585 */
586 public static <T> void copy(List<? super T> dest, List<? extends T> src) {
587 int srcSize = src.size();
588 if (srcSize > dest.size())
589 throw new IndexOutOfBoundsException("Source does not fit in dest");

14

590

591 if (srcSize < COPY_THRESHOLD ||
592 (src instanceof RandomAccess && dest instanceof RandomAccess)) {
593 for (int i=0; i<srcSize; i++)
594 dest.set(i, src.get(i));
595 } else {
596 ListIterator<? super T> di=dest.listIterator();
597 ListIterator<? extends T> si=src.listIterator();
598 for (int i=0; i<srcSize; i++) {
599 di.next();
600 di.set(si.next());
601 }
602 }
603 }
604

605 /**
606 * Returns the minimum element of the given collection, according to the
607 * <i>natural ordering</i> of its elements. All elements in the
608 * collection must implement the <tt>Comparable</tt> interface.
609 * Furthermore, all elements in the collection must be <i>mutually
610 * comparable</i> (that is, <tt>e1. compareTo(e2) </tt> must not throw a
611 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
612 * <tt>e2</tt> in the collection). <p>
613 *
614 * This method iterates over the entire collection, hence it requires
615 * time proportional to the size of the collection.
616 *
617 * @param coll the collection whose minimum element is to be determined.
618 * @return the minimum element of the given collection, according
619 * to the <i>natural ordering</i> of its elements.
620 * @throws ClassCastException if the collection contains elements that are
621 * not <i>mutually comparable</i> (for example, strings and
622 * integers).
623 * @throws NoSuchElementException if the collection is empty.
624 * @see Comparable
625 */
626 public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
627 Iterator<? extends T> i = coll.iterator();
628 T candidate = i.next();
629

630 while (i.hasNext()) {
631 T next = i.next();
632 if (next.compareTo(candidate) < 0)
633 candidate = next;
634 }
635 return candidate;

15

636 }
637

638 /**
639 * Returns the minimum element of the given collection, according to the
640 * order induced by the specified comparator. All elements in the
641 * collection must be <i>mutually comparable</i> by the specified
642 * comparator (that is, <tt>comp. compare(e1, e2) </tt> must not throw a
643 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
644 * <tt>e2</tt> in the collection). <p>
645 *
646 * This method iterates over the entire collection, hence it requires
647 * time proportional to the size of the collection.
648 *
649 * @param coll the collection whose minimum element is to be determined.
650 * @param comp the comparator with which to determine the minimum element.
651 * A <tt>null</tt> value indicates that the elements' <i>natural
652 * ordering</i> should be used.
653 * @return the minimum element of the given collection, according
654 * to the specified comparator.
655 * @throws ClassCastException if the collection contains elements that are
656 * not <i>mutually comparable</i> using the specified comparator.
657 * @throws NoSuchElementException if the collection is empty.
658 * @see Comparable
659 */
660 public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
661 if (comp==null)
662 return (T)min((Collection<SelfComparable>) (Collection) coll);
663

664 Iterator<? extends T> i = coll.iterator();
665 T candidate = i.next();
666

667 while (i.hasNext()) {
668 T next = i.next();
669 if (comp.compare(next, candidate) < 0)
670 candidate = next;
671 }
672 return candidate;
673 }
674

675 /**
676 * Returns the maximum element of the given collection, according to the
677 * <i>natural ordering</i> of its elements. All elements in the
678 * collection must implement the <tt>Comparable</tt> interface.
679 * Furthermore, all elements in the collection must be <i>mutually
680 * comparable</i> (that is, <tt>e1. compareTo(e2) </tt> must not throw a
681 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and

16

682 * <tt>e2</tt> in the collection). <p>
683 *
684 * This method iterates over the entire collection, hence it requires
685 * time proportional to the size of the collection.
686 *
687 * @param coll the collection whose maximum element is to be determined.
688 * @return the maximum element of the given collection, according
689 * to the <i>natural ordering</i> of its elements.
690 * @throws ClassCastException if the collection contains elements that are
691 * not <i>mutually comparable</i> (for example, strings and
692 * integers).
693 * @throws NoSuchElementException if the collection is empty.
694 * @see Comparable
695 */
696 public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
697 Iterator<? extends T> i = coll.iterator();
698 T candidate = i.next();
699

700 while (i.hasNext()) {
701 T next = i.next();
702 if (next.compareTo(candidate) > 0)
703 candidate = next;
704 }
705 return candidate;
706 }
707

708 /**
709 * Returns the maximum element of the given collection, according to the
710 * order induced by the specified comparator. All elements in the
711 * collection must be <i>mutually comparable</i> by the specified
712 * comparator (that is, <tt>comp. compare(e1, e2) </tt> must not throw a
713 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
714 * <tt>e2</tt> in the collection). <p>
715 *
716 * This method iterates over the entire collection, hence it requires
717 * time proportional to the size of the collection.
718 *
719 * @param coll the collection whose maximum element is to be determined.
720 * @param comp the comparator with which to determine the maximum element.
721 * A <tt>null</tt> value indicates that the elements' <i>natural
722 * ordering</i> should be used.
723 * @return the maximum element of the given collection, according
724 * to the specified comparator.
725 * @throws ClassCastException if the collection contains elements that are
726 * not <i>mutually comparable</i> using the specified comparator.
727 * @throws NoSuchElementException if the collection is empty.

17

728 * @see Comparable
729 */
730 public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
731 if (comp==null)
732 return (T)max((Collection<SelfComparable>) (Collection) coll);
733

734 Iterator<? extends T> i = coll.iterator();
735 T candidate = i.next();
736

737 while (i.hasNext()) {
738 T next = i.next();
739 if (comp.compare(next, candidate) > 0)
740 candidate = next;
741 }
742 return candidate;
743 }
744

745 /**
746 * Rotates the elements in the specified list by the specified distance.
747 * After calling this method, the element at index <tt>i</tt> will be
748 * the element previously at index <tt>(i - distance) </tt> mod
749 * <tt>list. size() </tt>, for all values of <tt>i</tt> between <tt>0</tt>
750 * and <tt>list. size()-1</tt>, inclusive. (This method has no effect on
751 * the size of the list.)
752 *
753 * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s] </tt>.
754 * After invoking <tt>Collections. rotate(list, 1) </tt> (or
755 * <tt>Collections. rotate(list, -4) </tt>), <tt>list</tt> will comprise
756 * <tt>[s, t, a, n, k] </tt>.
757 *
758 * <p>Note that this method can usefully be applied to sublists to
759 * move one or more elements within a list while preserving the
760 * order of the remaining elements. For example, the following idiom
761 * moves the element at index <tt>j</tt> forward to position
762 * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
763 * <pre>
764 * Collections. rotate(list. subList(j, k+1), -1);
765 * </pre>
766 * To make this concrete, suppose <tt>list</tt> comprises
767 * <tt>[a, b, c, d, e] </tt>. To move the element at index <tt>1</tt>
768 * (<tt>b</tt>) forward two positions, perform the following invocation:
769 * <pre>
770 * Collections. rotate(l. subList(1, 4), -1);
771 * </pre>
772 * The resulting list is <tt>[a, c, d, b, e] </tt>.
773 *

18

774 * <p>To move more than one element forward, increase the absolute value
775 * of the rotation distance. To move elements backward, use a positive
776 * shift distance.
777 *
778 * <p>If the specified list is small or implements the {@ link
779 * RandomAccess} interface, this implementation exchanges the first
780 * element into the location it should go, and then repeatedly exchanges
781 * the displaced element into the location it should go until a displaced
782 * element is swapped into the first element. If necessary, the process
783 * is repeated on the second and successive elements, until the rotation
784 * is complete. If the specified list is large and doesn' t implement the
785 * <tt>RandomAccess</tt> interface, this implementation breaks the
786 * list into two sublist views around index <tt>- distance mod size</tt>.
787 * Then the {@link #reverse(List)} method is invoked on each sublist view,
788 * and finally it is invoked on the entire list. For a more complete
789 * description of both algorithms, see Section 2.3 of Jon Bentley' s
790 * <i>Programming Pearls</i> (Addison- Wesley, 1986).
791 *
792 * @param list the list to be rotated.
793 * @param distance the distance to rotate the list. There are no
794 * constraints on this value; it may be zero, negative, or
795 * greater than <tt>list. size() </tt>.
796 * @throws UnsupportedOperationException if the specified list or
797 * its list- iterator does not support the <tt>set</tt> operation.
798 * @since 1.4
799 */
800 public static void rotate(List<?> list, int distance) {
801 if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
802 rotate1(list, distance);
803 else
804 rotate2(list, distance);
805 }
806

807 private static <T> void rotate1(List<T> list, int distance) {
808 int size = list.size();
809 if (size == 0)
810 return;
811 distance = distance % size;
812 if (distance < 0)
813 distance += size;
814 if (distance == 0)
815 return;
816

817 for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
818 T displaced = list.get(cycleStart);
819 int i = cycleStart;

19

820 do {
821 i += distance;
822 if (i >= size)
823 i -= size;
824 displaced = list.set(i, displaced);
825 nMoved ++;
826 } while (i != cycleStart);
827 }
828 }
829

830 private static void rotate2(List<?> list, int distance) {
831 int size = list.size();
832 if (size == 0)
833 return;
834 int mid = -distance % size;
835 if (mid < 0)
836 mid += size;
837 if (mid == 0)
838 return;
839

840 reverse(list.subList(0, mid));
841 reverse(list.subList(mid, size));
842 reverse(list);
843 }
844

845 /**
846 * Replaces all occurrences of one specified value in a list with another.
847 * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
848 * in <tt>list</tt> such that
849 * <tt>(oldVal== null ? e== null : oldVal. equals(e)) </tt>.
850 * (This method has no effect on the size of the list.)
851 *
852 * @param list the list in which replacement is to occur.
853 * @param oldVal the old value to be replaced.
854 * @param newVal the new value with which <tt>oldVal</tt> is to be
855 * replaced.
856 * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
857 * <tt>e</tt> such that
858 * <tt>(oldVal== null ? e== null : oldVal. equals(e)) </tt>.
859 * @throws UnsupportedOperationException if the specified list or
860 * its list- iterator does not support the <tt>set</tt> operation.
861 * @since 1.4
862 */
863 public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
864 boolean result = false;
865 int size = list.size();

20

866 if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
867 if (oldVal==null) {
868 for (int i=0; i<size; i++) {
869 if (list.get(i)==null) {
870 list.set(i, newVal);
871 result = true;
872 }
873 }
874 } else {
875 for (int i=0; i<size; i++) {
876 if (oldVal.equals(list.get(i))) {
877 list.set(i, newVal);
878 result = true;
879 }
880 }
881 }
882 } else {
883 ListIterator<T> itr=list.listIterator();
884 if (oldVal==null) {
885 for (int i=0; i<size; i++) {
886 if (itr.next()==null) {
887 itr.set(newVal);
888 result = true;
889 }
890 }
891 } else {
892 for (int i=0; i<size; i++) {
893 if (oldVal.equals(itr.next())) {
894 itr.set(newVal);
895 result = true;
896 }
897 }
898 }
899 }
900 return result;
901 }
902

903 /**
904 * Returns the starting position of the first occurrence of the specified
905 * target list within the specified source list, or -1 if there is no
906 * such occurrence. More formally, returns the lowest index <tt>i</tt>
907 * such that <tt>source. subList(i, i+ target. size()). equals(target) </tt>,
908 * or -1 if there is no such index. (Returns -1 if
909 * <tt>target. size() > source. size() </tt>.)
910 *
911 * <p>This implementation uses the " brute force" technique of scanning

21

912 * over the source list, looking for a match with the target at each
913 * location in turn.
914 *
915 * @param source the list in which to search for the first occurrence
916 * of <tt>target</tt>.
917 * @param target the list to search for as a subList of <tt>source</tt>.
918 * @return the starting position of the first occurrence of the specified
919 * target list within the specified source list, or -1 if there
920 * is no such occurrence.
921 * @since 1.4
922 */
923 public static int indexOfSubList(List<?> source, List<?> target) {
924 int sourceSize = source.size();
925 int targetSize = target.size();
926 int maxCandidate = sourceSize - targetSize;
927

928 if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
929 (source instanceof RandomAccess&&target instanceof RandomAccess)) {
930 nextCand:
931 for (int candidate = 0; candidate <= maxCandidate; candidate++) {
932 for (int i=0, j=candidate; i<targetSize; i++, j++)
933 if (!eq(target.get(i), source.get(j)))
934 continue nextCand; // Element mismatch, try next cand
935 return candidate; // All elements of candidate matched target
936 }
937 } else { // Iterator version of above algorithm
938 ListIterator<?> si = source.listIterator();
939 nextCand:
940 for (int candidate = 0; candidate <= maxCandidate; candidate++) {
941 ListIterator<?> ti = target.listIterator();
942 for (int i=0; i<targetSize; i++) {
943 if (!eq(ti.next(), si.next())) {
944 // Back up source iterator to next candidate
945 for (int j=0; j<i; j++)
946 si.previous();
947 continue nextCand;
948 }
949 }
950 return candidate;
951 }
952 }
953 return -1; // No candidate matched the target
954 }
955

956 /**
957 * Returns the starting position of the last occurrence of the specified

22

958 * target list within the specified source list, or -1 if there is no such
959 * occurrence. More formally, returns the highest index <tt>i</tt>
960 * such that <tt>source. subList(i, i+ target. size()). equals(target) </tt>,
961 * or -1 if there is no such index. (Returns -1 if
962 * <tt>target. size() > source. size() </tt>.)
963 *
964 * <p>This implementation uses the " brute force" technique of iterating
965 * over the source list, looking for a match with the target at each
966 * location in turn.
967 *
968 * @param source the list in which to search for the last occurrence
969 * of <tt>target</tt>.
970 * @param target the list to search for as a subList of <tt>source</tt>.
971 * @return the starting position of the last occurrence of the specified
972 * target list within the specified source list, or -1 if there
973 * is no such occurrence.
974 * @since 1.4
975 */
976 public static int lastIndexOfSubList(List<?> source, List<?> target) {
977 int sourceSize = source.size();
978 int targetSize = target.size();
979 int maxCandidate = sourceSize - targetSize;
980

981 if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
982 source instanceof RandomAccess) { // Index access version
983 nextCand:
984 for (int candidate = maxCandidate; candidate >= 0; candidate--) {
985 for (int i=0, j=candidate; i<targetSize; i++, j++)
986 if (!eq(target.get(i), source.get(j)))
987 continue nextCand; // Element mismatch, try next cand
988 return candidate; // All elements of candidate matched target
989 }
990 } else { // Iterator version of above algorithm
991 if (maxCandidate < 0)
992 return -1;
993 ListIterator<?> si = source.listIterator(maxCandidate);
994 nextCand:
995 for (int candidate = maxCandidate; candidate >= 0; candidate--) {
996 ListIterator<?> ti = target.listIterator();
997 for (int i=0; i<targetSize; i++) {
998 if (!eq(ti.next(), si.next())) {
999 if (candidate != 0) {

1000 // Back up source iterator to next candidate
1001 for (int j=0; j<=i+1; j++)
1002 si.previous();
1003 }

23

1004 continue nextCand;
1005 }
1006 }
1007 return candidate;
1008 }
1009 }
1010 return -1; // No candidate matched the target
1011 }
1012

1013

1014 // Unmodifiable Wrappers
1015

1016 /**
1017 * Returns an unmodifiable view of the specified collection. This method
1018 * allows modules to provide users with " read- only" access to internal
1019 * collections. Query operations on the returned collection " read through"
1020 * to the specified collection, and attempts to modify the returned
1021 * collection, whether direct or via its iterator, result in an
1022 * <tt>UnsupportedOperationException</tt>. <p>
1023 *
1024 * The returned collection does <i>not</i> pass the hashCode and equals
1025 * operations through to the backing collection, but relies on
1026 * <tt>Object</tt>' s <tt>equals</tt> and <tt>hashCode</tt> methods. This
1027 * is necessary to preserve the contracts of these operations in the case
1028 * that the backing collection is a set or a list. <p>
1029 *
1030 * The returned collection will be serializable if the specified collection
1031 * is serializable.
1032 *
1033 * @param c the collection for which an unmodifiable view is to be
1034 * returned.
1035 * @return an unmodifiable view of the specified collection.
1036 */
1037 public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1038 return new UnmodifiableCollection<>(c);
1039 }
1040

1041 /**
1042 * @serial include
1043 */
1044 static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1045 private static final long serialVersionUID = 1820017752578914078L;
1046

1047 final Collection<? extends E> c;
1048

1049 UnmodifiableCollection(Collection<? extends E> c) {

24

1050 if (c==null)
1051 throw new NullPointerException();
1052 this.c = c;
1053 }
1054

1055 public int size() {return c.size();}
1056 public boolean isEmpty() {return c.isEmpty();}
1057 public boolean contains(Object o) {return c.contains(o);}
1058 public Object[] toArray() {return c.toArray();}
1059 public <T> T[] toArray(T[] a) {return c.toArray(a);}
1060 public String toString() {return c.toString();}
1061

1062 public Iterator<E> iterator() {
1063 return new Iterator<E>() {
1064 private final Iterator<? extends E> i = c.iterator();
1065

1066 public boolean hasNext() {return i.hasNext();}
1067 public E next() {return i.next();}
1068 public void remove() {
1069 throw new UnsupportedOperationException();
1070 }
1071 };
1072 }
1073

1074 public boolean add(E e) {
1075 throw new UnsupportedOperationException();
1076 }
1077 public boolean remove(Object o) {
1078 throw new UnsupportedOperationException();
1079 }
1080

1081 public boolean containsAll(Collection<?> coll) {
1082 return c.containsAll(coll);
1083 }
1084 public boolean addAll(Collection<? extends E> coll) {
1085 throw new UnsupportedOperationException();
1086 }
1087 public boolean removeAll(Collection<?> coll) {
1088 throw new UnsupportedOperationException();
1089 }
1090 public boolean retainAll(Collection<?> coll) {
1091 throw new UnsupportedOperationException();
1092 }
1093 public void clear() {
1094 throw new UnsupportedOperationException();
1095 }

25

1096 }
1097

1098 /**
1099 * Returns an unmodifiable view of the specified set. This method allows
1100 * modules to provide users with " read- only" access to internal sets.
1101 * Query operations on the returned set " read through" to the specified
1102 * set, and attempts to modify the returned set, whether direct or via its
1103 * iterator, result in an <tt>UnsupportedOperationException</tt>. <p>
1104 *
1105 * The returned set will be serializable if the specified set
1106 * is serializable.
1107 *
1108 * @param s the set for which an unmodifiable view is to be returned.
1109 * @return an unmodifiable view of the specified set.
1110 */
1111 public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1112 return new UnmodifiableSet<>(s);
1113 }
1114

1115 /**
1116 * @serial include
1117 */
1118 static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1119 implements Set<E>, Serializable {
1120 private static final long serialVersionUID = -9215047833775013803L;
1121

1122 UnmodifiableSet(Set<? extends E> s) {super(s);}
1123 public boolean equals(Object o) {return o == this || c.equals(o);}
1124 public int hashCode() {return c.hashCode();}
1125 }
1126

1127 /**
1128 * Returns an unmodifiable view of the specified sorted set. This method
1129 * allows modules to provide users with " read- only" access to internal
1130 * sorted sets. Query operations on the returned sorted set " read
1131 * through" to the specified sorted set. Attempts to modify the returned
1132 * sorted set, whether direct, via its iterator, or via its
1133 * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1134 * an <tt>UnsupportedOperationException</tt>. <p>
1135 *
1136 * The returned sorted set will be serializable if the specified sorted set
1137 * is serializable.
1138 *
1139 * @param s the sorted set for which an unmodifiable view is to be
1140 * returned.
1141 * @return an unmodifiable view of the specified sorted set.

26

1142 */
1143 public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1144 return new UnmodifiableSortedSet<>(s);
1145 }
1146

1147 /**
1148 * @serial include
1149 */
1150 static class UnmodifiableSortedSet<E>
1151 extends UnmodifiableSet<E>
1152 implements SortedSet<E>, Serializable {
1153 private static final long serialVersionUID = -4929149591599911165L;
1154 private final SortedSet<E> ss;
1155

1156 UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1157

1158 public Comparator<? super E> comparator() {return ss.comparator();}
1159

1160 public SortedSet<E> subSet(E fromElement, E toElement) {
1161 return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1162 }
1163 public SortedSet<E> headSet(E toElement) {
1164 return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1165 }
1166 public SortedSet<E> tailSet(E fromElement) {
1167 return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1168 }
1169

1170 public E first() {return ss.first();}
1171 public E last() {return ss.last();}
1172 }
1173

1174 /**
1175 * Returns an unmodifiable view of the specified list. This method allows
1176 * modules to provide users with " read- only" access to internal
1177 * lists. Query operations on the returned list " read through" to the
1178 * specified list, and attempts to modify the returned list, whether
1179 * direct or via its iterator, result in an
1180 * <tt>UnsupportedOperationException</tt>. <p>
1181 *
1182 * The returned list will be serializable if the specified list
1183 * is serializable. Similarly, the returned list will implement
1184 * {@link RandomAccess} if the specified list does.
1185 *
1186 * @param list the list for which an unmodifiable view is to be returned.
1187 * @return an unmodifiable view of the specified list.

27

1188 */
1189 public static <T> List<T> unmodifiableList(List<? extends T> list) {
1190 return (list instanceof RandomAccess ?
1191 new UnmodifiableRandomAccessList<>(list) :
1192 new UnmodifiableList<>(list));
1193 }
1194

1195 /**
1196 * @serial include
1197 */
1198 static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1199 implements List<E> {
1200 private static final long serialVersionUID = -283967356065247728L;
1201 final List<? extends E> list;
1202

1203 UnmodifiableList(List<? extends E> list) {
1204 super(list);
1205 this.list = list;
1206 }
1207

1208 public boolean equals(Object o) {return o == this || list.equals(o);}
1209 public int hashCode() {return list.hashCode();}
1210

1211 public E get(int index) {return list.get(index);}
1212 public E set(int index, E element) {
1213 throw new UnsupportedOperationException();
1214 }
1215 public void add(int index, E element) {
1216 throw new UnsupportedOperationException();
1217 }
1218 public E remove(int index) {
1219 throw new UnsupportedOperationException();
1220 }
1221 public int indexOf(Object o) {return list.indexOf(o);}
1222 public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
1223 public boolean addAll(int index, Collection<? extends E> c) {
1224 throw new UnsupportedOperationException();
1225 }
1226 public ListIterator<E> listIterator() {return listIterator(0);}
1227

1228 public ListIterator<E> listIterator(final int index) {
1229 return new ListIterator<E>() {
1230 private final ListIterator<? extends E> i
1231 = list.listIterator(index);
1232

1233 public boolean hasNext() {return i.hasNext();}

28

1234 public E next() {return i.next();}
1235 public boolean hasPrevious() {return i.hasPrevious();}
1236 public E previous() {return i.previous();}
1237 public int nextIndex() {return i.nextIndex();}
1238 public int previousIndex() {return i.previousIndex();}
1239

1240 public void remove() {
1241 throw new UnsupportedOperationException();
1242 }
1243 public void set(E e) {
1244 throw new UnsupportedOperationException();
1245 }
1246 public void add(E e) {
1247 throw new UnsupportedOperationException();
1248 }
1249 };
1250 }
1251

1252 public List<E> subList(int fromIndex, int toIndex) {
1253 return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1254 }
1255

1256 /**
1257 * UnmodifiableRandomAccessList instances are serialized as
1258 * UnmodifiableList instances to allow them to be deserialized
1259 * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1260 * This method inverts the transformation. As a beneficial
1261 * side- effect, it also grafts the RandomAccess marker onto
1262 * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1263 *
1264 * Note: Unfortunately, UnmodifiableRandomAccessList instances
1265 * serialized in 1.4.1 and deserialized in 1.4 will become
1266 * UnmodifiableList instances, as this method was missing in 1.4.
1267 */
1268 private Object readResolve() {
1269 return (list instanceof RandomAccess
1270 ? new UnmodifiableRandomAccessList<>(list)
1271 : this);
1272 }
1273 }
1274

1275 /**
1276 * @serial include
1277 */
1278 static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1279 implements RandomAccess

29

1280 {
1281 UnmodifiableRandomAccessList(List<? extends E> list) {
1282 super(list);
1283 }
1284

1285 public List<E> subList(int fromIndex, int toIndex) {
1286 return new UnmodifiableRandomAccessList<>(
1287 list.subList(fromIndex, toIndex));
1288 }
1289

1290 private static final long serialVersionUID = -2542308836966382001L;
1291

1292 /**
1293 * Allows instances to be deserialized in pre-1.4 JREs (which do
1294 * not have UnmodifiableRandomAccessList). UnmodifiableList has
1295 * a readResolve method that inverts this transformation upon
1296 * deserialization.
1297 */
1298 private Object writeReplace() {
1299 return new UnmodifiableList<>(list);
1300 }
1301 }
1302

1303 /**
1304 * Returns an unmodifiable view of the specified map. This method
1305 * allows modules to provide users with " read- only" access to internal
1306 * maps. Query operations on the returned map " read through"
1307 * to the specified map, and attempts to modify the returned
1308 * map, whether direct or via its collection views, result in an
1309 * <tt>UnsupportedOperationException</tt>. <p>
1310 *
1311 * The returned map will be serializable if the specified map
1312 * is serializable.
1313 *
1314 * @param m the map for which an unmodifiable view is to be returned.
1315 * @return an unmodifiable view of the specified map.
1316 */
1317 public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1318 return new UnmodifiableMap<>(m);
1319 }
1320

1321 /**
1322 * @serial include
1323 */
1324 private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1325 private static final long serialVersionUID = -1034234728574286014L;

30

1326

1327 private final Map<? extends K, ? extends V> m;
1328

1329 UnmodifiableMap(Map<? extends K, ? extends V> m) {
1330 if (m==null)
1331 throw new NullPointerException();
1332 this.m = m;
1333 }
1334

1335 public int size() {return m.size();}
1336 public boolean isEmpty() {return m.isEmpty();}
1337 public boolean containsKey(Object key) {return m.containsKey(key);}
1338 public boolean containsValue(Object val) {return m.containsValue(val);}
1339 public V get(Object key) {return m.get(key);}
1340

1341 public V put(K key, V value) {
1342 throw new UnsupportedOperationException();
1343 }
1344 public V remove(Object key) {
1345 throw new UnsupportedOperationException();
1346 }
1347 public void putAll(Map<? extends K, ? extends V> m) {
1348 throw new UnsupportedOperationException();
1349 }
1350 public void clear() {
1351 throw new UnsupportedOperationException();
1352 }
1353

1354 private transient Set<K> keySet = null;
1355 private transient Set<Map.Entry<K,V>> entrySet = null;
1356 private transient Collection<V> values = null;
1357

1358 public Set<K> keySet() {
1359 if (keySet==null)
1360 keySet = unmodifiableSet(m.keySet());
1361 return keySet;
1362 }
1363

1364 public Set<Map.Entry<K,V>> entrySet() {
1365 if (entrySet==null)
1366 entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1367 return entrySet;
1368 }
1369

1370 public Collection<V> values() {
1371 if (values==null)

31

1372 values = unmodifiableCollection(m.values());
1373 return values;
1374 }
1375

1376 public boolean equals(Object o) {return o == this || m.equals(o);}
1377 public int hashCode() {return m.hashCode();}
1378 public String toString() {return m.toString();}
1379

1380 /**
1381 * We need this class in addition to UnmodifiableSet as
1382 * Map. Entries themselves permit modification of the backing Map
1383 * via their setValue operation. This class is subtle: there are
1384 * many possible attacks that must be thwarted.
1385 *
1386 * @serial include
1387 */
1388 static class UnmodifiableEntrySet<K,V>
1389 extends UnmodifiableSet<Map.Entry<K,V>> {
1390 private static final long serialVersionUID = 7854390611657943733L;
1391

1392 UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1393 super((Set)s);
1394 }
1395 public Iterator<Map.Entry<K,V>> iterator() {
1396 return new Iterator<Map.Entry<K,V>>() {
1397 private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1398

1399 public boolean hasNext() {
1400 return i.hasNext();
1401 }
1402 public Map.Entry<K,V> next() {
1403 return new UnmodifiableEntry<>(i.next());
1404 }
1405 public void remove() {
1406 throw new UnsupportedOperationException();
1407 }
1408 };
1409 }
1410

1411 public Object[] toArray() {
1412 Object[] a = c.toArray();
1413 for (int i=0; i<a.length; i++)
1414 a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
1415 return a;
1416 }
1417

32

1418 public <T> T[] toArray(T[] a) {
1419 // We don't pass a to c.toArray, to avoid window of
1420 // vulnerability wherein an unscrupulous multithreaded client
1421 // could get his hands on raw (unwrapped) Entries from c.
1422 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1423

1424 for (int i=0; i<arr.length; i++)
1425 arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
1426

1427 if (arr.length > a.length)
1428 return (T[])arr;
1429

1430 System.arraycopy(arr, 0, a, 0, arr.length);
1431 if (a.length > arr.length)
1432 a[arr.length] = null;
1433 return a;
1434 }
1435

1436 /**
1437 * This method is overridden to protect the backing set against
1438 * an object with a nefarious equals function that senses
1439 * that the equality- candidate is Map. Entry and calls its
1440 * setValue method.
1441 */
1442 public boolean contains(Object o) {
1443 if (!(o instanceof Map.Entry))
1444 return false;
1445 return c.contains(
1446 new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1447 }
1448

1449 /**
1450 * The next two methods are overridden to protect against
1451 * an unscrupulous List whose contains(Object o) method senses
1452 * when o is a Map. Entry, and calls o. setValue.
1453 */
1454 public boolean containsAll(Collection<?> coll) {
1455 for (Object e : coll) {
1456 if (!contains(e)) // Invokes safe contains() above
1457 return false;
1458 }
1459 return true;
1460 }
1461 public boolean equals(Object o) {
1462 if (o == this)
1463 return true;

33

1464

1465 if (!(o instanceof Set))
1466 return false;
1467 Set s = (Set) o;
1468 if (s.size() != c.size())
1469 return false;
1470 return containsAll(s); // Invokes safe containsAll() above
1471 }
1472

1473 /**
1474 * This " wrapper class" serves two purposes: it prevents
1475 * the client from modifying the backing Map, by short- circuiting
1476 * the setValue method, and it protects the backing Map against
1477 * an ill- behaved Map. Entry that attempts to modify another
1478 * Map Entry when asked to perform an equality check.
1479 */
1480 private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1481 private Map.Entry<? extends K, ? extends V> e;
1482

1483 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1484

1485 public K getKey() {return e.getKey();}
1486 public V getValue() {return e.getValue();}
1487 public V setValue(V value) {
1488 throw new UnsupportedOperationException();
1489 }
1490 public int hashCode() {return e.hashCode();}
1491 public boolean equals(Object o) {
1492 if (this == o)
1493 return true;
1494 if (!(o instanceof Map.Entry))
1495 return false;
1496 Map.Entry t = (Map.Entry)o;
1497 return eq(e.getKey(), t.getKey()) &&
1498 eq(e.getValue(), t.getValue());
1499 }
1500 public String toString() {return e.toString();}
1501 }
1502 }
1503 }
1504

1505 /**
1506 * Returns an unmodifiable view of the specified sorted map. This method
1507 * allows modules to provide users with " read- only" access to internal
1508 * sorted maps. Query operations on the returned sorted map " read through"
1509 * to the specified sorted map. Attempts to modify the returned

34

1510 * sorted map, whether direct, via its collection views, or via its
1511 * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1512 * an <tt>UnsupportedOperationException</tt>. <p>
1513 *
1514 * The returned sorted map will be serializable if the specified sorted map
1515 * is serializable.
1516 *
1517 * @param m the sorted map for which an unmodifiable view is to be
1518 * returned.
1519 * @return an unmodifiable view of the specified sorted map.
1520 */
1521 public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1522 return new UnmodifiableSortedMap<>(m);
1523 }
1524

1525 /**
1526 * @serial include
1527 */
1528 static class UnmodifiableSortedMap<K,V>
1529 extends UnmodifiableMap<K,V>
1530 implements SortedMap<K,V>, Serializable {
1531 private static final long serialVersionUID = -8806743815996713206L;
1532

1533 private final SortedMap<K, ? extends V> sm;
1534

1535 UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1536

1537 public Comparator<? super K> comparator() {return sm.comparator();}
1538

1539 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1540 return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1541 }
1542 public SortedMap<K,V> headMap(K toKey) {
1543 return new UnmodifiableSortedMap<>(sm.headMap(toKey));
1544 }
1545 public SortedMap<K,V> tailMap(K fromKey) {
1546 return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
1547 }
1548

1549 public K firstKey() {return sm.firstKey();}
1550 public K lastKey() {return sm.lastKey();}
1551 }
1552

1553

1554 // Synch Wrappers
1555

35

1556 /**
1557 * Returns a synchronized (thread- safe) collection backed by the specified
1558 * collection. In order to guarantee serial access, it is critical that
1559 * all access to the backing collection is accomplished
1560 * through the returned collection. <p>
1561 *
1562 * It is imperative that the user manually synchronize on the returned
1563 * collection when iterating over it:
1564 * <pre>
1565 * Collection c = Collections. synchronizedCollection(myCollection);
1566 * ...
1567 * synchronized (c) {
1568 * Iterator i = c. iterator(); // Must be in the synchronized block
1569 * while (i. hasNext())
1570 * foo(i. next());
1571 * }
1572 * </pre>
1573 * Failure to follow this advice may result in non- deterministic behavior.
1574 *
1575 * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1576 * and <tt>equals</tt> operations through to the backing collection, but
1577 * relies on <tt>Object</tt>' s equals and hashCode methods. This is
1578 * necessary to preserve the contracts of these operations in the case
1579 * that the backing collection is a set or a list. <p>
1580 *
1581 * The returned collection will be serializable if the specified collection
1582 * is serializable.
1583 *
1584 * @param c the collection to be " wrapped" in a synchronized collection.
1585 * @return a synchronized view of the specified collection.
1586 */
1587 public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1588 return new SynchronizedCollection<>(c);
1589 }
1590

1591 static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1592 return new SynchronizedCollection<>(c, mutex);
1593 }
1594

1595 /**
1596 * @serial include
1597 */
1598 static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1599 private static final long serialVersionUID = 3053995032091335093L;
1600

1601 final Collection<E> c; // Backing Collection

36

1602 final Object mutex; // Object on which to synchronize
1603

1604 SynchronizedCollection(Collection<E> c) {
1605 if (c==null)
1606 throw new NullPointerException();
1607 this.c = c;
1608 mutex = this;
1609 }
1610 SynchronizedCollection(Collection<E> c, Object mutex) {
1611 this.c = c;
1612 this.mutex = mutex;
1613 }
1614

1615 public int size() {
1616 synchronized (mutex) {return c.size();}
1617 }
1618 public boolean isEmpty() {
1619 synchronized (mutex) {return c.isEmpty();}
1620 }
1621 public boolean contains(Object o) {
1622 synchronized (mutex) {return c.contains(o);}
1623 }
1624 public Object[] toArray() {
1625 synchronized (mutex) {return c.toArray();}
1626 }
1627 public <T> T[] toArray(T[] a) {
1628 synchronized (mutex) {return c.toArray(a);}
1629 }
1630

1631 public Iterator<E> iterator() {
1632 return c.iterator(); // Must be manually synched by user!
1633 }
1634

1635 public boolean add(E e) {
1636 synchronized (mutex) {return c.add(e);}
1637 }
1638 public boolean remove(Object o) {
1639 synchronized (mutex) {return c.remove(o);}
1640 }
1641

1642 public boolean containsAll(Collection<?> coll) {
1643 synchronized (mutex) {return c.containsAll(coll);}
1644 }
1645 public boolean addAll(Collection<? extends E> coll) {
1646 synchronized (mutex) {return c.addAll(coll);}
1647 }

37

1648 public boolean removeAll(Collection<?> coll) {
1649 synchronized (mutex) {return c.removeAll(coll);}
1650 }
1651 public boolean retainAll(Collection<?> coll) {
1652 synchronized (mutex) {return c.retainAll(coll);}
1653 }
1654 public void clear() {
1655 synchronized (mutex) {c.clear();}
1656 }
1657 public String toString() {
1658 synchronized (mutex) {return c.toString();}
1659 }
1660 private void writeObject(ObjectOutputStream s) throws IOException {
1661 synchronized (mutex) {s.defaultWriteObject();}
1662 }
1663 }
1664

1665 /**
1666 * Returns a synchronized (thread- safe) set backed by the specified
1667 * set. In order to guarantee serial access, it is critical that
1668 * all access to the backing set is accomplished
1669 * through the returned set. <p>
1670 *
1671 * It is imperative that the user manually synchronize on the returned
1672 * set when iterating over it:
1673 * <pre>
1674 * Set s = Collections. synchronizedSet(new HashSet());
1675 * ...
1676 * synchronized (s) {
1677 * Iterator i = s. iterator(); // Must be in the synchronized block
1678 * while (i. hasNext())
1679 * foo(i. next());
1680 * }
1681 * </pre>
1682 * Failure to follow this advice may result in non- deterministic behavior.
1683 *
1684 * <p>The returned set will be serializable if the specified set is
1685 * serializable.
1686 *
1687 * @param s the set to be " wrapped" in a synchronized set.
1688 * @return a synchronized view of the specified set.
1689 */
1690 public static <T> Set<T> synchronizedSet(Set<T> s) {
1691 return new SynchronizedSet<>(s);
1692 }
1693

38

1694 static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1695 return new SynchronizedSet<>(s, mutex);
1696 }
1697

1698 /**
1699 * @serial include
1700 */
1701 static class SynchronizedSet<E>
1702 extends SynchronizedCollection<E>
1703 implements Set<E> {
1704 private static final long serialVersionUID = 487447009682186044L;
1705

1706 SynchronizedSet(Set<E> s) {
1707 super(s);
1708 }
1709 SynchronizedSet(Set<E> s, Object mutex) {
1710 super(s, mutex);
1711 }
1712

1713 public boolean equals(Object o) {
1714 if (this == o)
1715 return true;
1716 synchronized (mutex) {return c.equals(o);}
1717 }
1718 public int hashCode() {
1719 synchronized (mutex) {return c.hashCode();}
1720 }
1721 }
1722

1723 /**
1724 * Returns a synchronized (thread- safe) sorted set backed by the specified
1725 * sorted set. In order to guarantee serial access, it is critical that
1726 * all access to the backing sorted set is accomplished
1727 * through the returned sorted set (or its views). <p>
1728 *
1729 * It is imperative that the user manually synchronize on the returned
1730 * sorted set when iterating over it or any of its <tt>subSet</tt>,
1731 * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1732 * <pre>
1733 * SortedSet s = Collections. synchronizedSortedSet(new TreeSet());
1734 * ...
1735 * synchronized (s) {
1736 * Iterator i = s. iterator(); // Must be in the synchronized block
1737 * while (i. hasNext())
1738 * foo(i. next());
1739 * }

39

1740 * </pre>
1741 * or:
1742 * <pre>
1743 * SortedSet s = Collections. synchronizedSortedSet(new TreeSet());
1744 * SortedSet s2 = s. headSet(foo);
1745 * ...
1746 * synchronized (s) { // Note: s, not s2!!!
1747 * Iterator i = s2. iterator(); // Must be in the synchronized block
1748 * while (i. hasNext())
1749 * foo(i. next());
1750 * }
1751 * </pre>
1752 * Failure to follow this advice may result in non- deterministic behavior.
1753 *
1754 * <p>The returned sorted set will be serializable if the specified
1755 * sorted set is serializable.
1756 *
1757 * @param s the sorted set to be " wrapped" in a synchronized sorted set.
1758 * @return a synchronized view of the specified sorted set.
1759 */
1760 public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1761 return new SynchronizedSortedSet<>(s);
1762 }
1763

1764 /**
1765 * @serial include
1766 */
1767 static class SynchronizedSortedSet<E>
1768 extends SynchronizedSet<E>
1769 implements SortedSet<E>
1770 {
1771 private static final long serialVersionUID = 8695801310862127406L;
1772

1773 private final SortedSet<E> ss;
1774

1775 SynchronizedSortedSet(SortedSet<E> s) {
1776 super(s);
1777 ss = s;
1778 }
1779 SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1780 super(s, mutex);
1781 ss = s;
1782 }
1783

1784 public Comparator<? super E> comparator() {
1785 synchronized (mutex) {return ss.comparator();}

40

1786 }
1787

1788 public SortedSet<E> subSet(E fromElement, E toElement) {
1789 synchronized (mutex) {
1790 return new SynchronizedSortedSet<>(
1791 ss.subSet(fromElement, toElement), mutex);
1792 }
1793 }
1794 public SortedSet<E> headSet(E toElement) {
1795 synchronized (mutex) {
1796 return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
1797 }
1798 }
1799 public SortedSet<E> tailSet(E fromElement) {
1800 synchronized (mutex) {
1801 return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
1802 }
1803 }
1804

1805 public E first() {
1806 synchronized (mutex) {return ss.first();}
1807 }
1808 public E last() {
1809 synchronized (mutex) {return ss.last();}
1810 }
1811 }
1812

1813 /**
1814 * Returns a synchronized (thread- safe) list backed by the specified
1815 * list. In order to guarantee serial access, it is critical that
1816 * all access to the backing list is accomplished
1817 * through the returned list. <p>
1818 *
1819 * It is imperative that the user manually synchronize on the returned
1820 * list when iterating over it:
1821 * <pre>
1822 * List list = Collections. synchronizedList(new ArrayList());
1823 * ...
1824 * synchronized (list) {
1825 * Iterator i = list. iterator(); // Must be in synchronized block
1826 * while (i. hasNext())
1827 * foo(i. next());
1828 * }
1829 * </pre>
1830 * Failure to follow this advice may result in non- deterministic behavior.
1831 *

41

1832 * <p>The returned list will be serializable if the specified list is
1833 * serializable.
1834 *
1835 * @param list the list to be " wrapped" in a synchronized list.
1836 * @return a synchronized view of the specified list.
1837 */
1838 public static <T> List<T> synchronizedList(List<T> list) {
1839 return (list instanceof RandomAccess ?
1840 new SynchronizedRandomAccessList<>(list) :
1841 new SynchronizedList<>(list));
1842 }
1843

1844 static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1845 return (list instanceof RandomAccess ?
1846 new SynchronizedRandomAccessList<>(list, mutex) :
1847 new SynchronizedList<>(list, mutex));
1848 }
1849

1850 /**
1851 * @serial include
1852 */
1853 static class SynchronizedList<E>
1854 extends SynchronizedCollection<E>
1855 implements List<E> {
1856 private static final long serialVersionUID = -7754090372962971524L;
1857

1858 final List<E> list;
1859

1860 SynchronizedList(List<E> list) {
1861 super(list);
1862 this.list = list;
1863 }
1864 SynchronizedList(List<E> list, Object mutex) {
1865 super(list, mutex);
1866 this.list = list;
1867 }
1868

1869 public boolean equals(Object o) {
1870 if (this == o)
1871 return true;
1872 synchronized (mutex) {return list.equals(o);}
1873 }
1874 public int hashCode() {
1875 synchronized (mutex) {return list.hashCode();}
1876 }
1877

42

1878 public E get(int index) {
1879 synchronized (mutex) {return list.get(index);}
1880 }
1881 public E set(int index, E element) {
1882 synchronized (mutex) {return list.set(index, element);}
1883 }
1884 public void add(int index, E element) {
1885 synchronized (mutex) {list.add(index, element);}
1886 }
1887 public E remove(int index) {
1888 synchronized (mutex) {return list.remove(index);}
1889 }
1890

1891 public int indexOf(Object o) {
1892 synchronized (mutex) {return list.indexOf(o);}
1893 }
1894 public int lastIndexOf(Object o) {
1895 synchronized (mutex) {return list.lastIndexOf(o);}
1896 }
1897

1898 public boolean addAll(int index, Collection<? extends E> c) {
1899 synchronized (mutex) {return list.addAll(index, c);}
1900 }
1901

1902 public ListIterator<E> listIterator() {
1903 return list.listIterator(); // Must be manually synched by user
1904 }
1905

1906 public ListIterator<E> listIterator(int index) {
1907 return list.listIterator(index); // Must be manually synched by user
1908 }
1909

1910 public List<E> subList(int fromIndex, int toIndex) {
1911 synchronized (mutex) {
1912 return new SynchronizedList<>(list.subList(fromIndex, toIndex),
1913 mutex);
1914 }
1915 }
1916

1917 /**
1918 * SynchronizedRandomAccessList instances are serialized as
1919 * SynchronizedList instances to allow them to be deserialized
1920 * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1921 * This method inverts the transformation. As a beneficial
1922 * side- effect, it also grafts the RandomAccess marker onto
1923 * SynchronizedList instances that were serialized in pre-1.4 JREs.

43

1924 *
1925 * Note: Unfortunately, SynchronizedRandomAccessList instances
1926 * serialized in 1.4.1 and deserialized in 1.4 will become
1927 * SynchronizedList instances, as this method was missing in 1.4.
1928 */
1929 private Object readResolve() {
1930 return (list instanceof RandomAccess
1931 ? new SynchronizedRandomAccessList<>(list)
1932 : this);
1933 }
1934 }
1935

1936 /**
1937 * @serial include
1938 */
1939 static class SynchronizedRandomAccessList<E>
1940 extends SynchronizedList<E>
1941 implements RandomAccess {
1942

1943 SynchronizedRandomAccessList(List<E> list) {
1944 super(list);
1945 }
1946

1947 SynchronizedRandomAccessList(List<E> list, Object mutex) {
1948 super(list, mutex);
1949 }
1950

1951 public List<E> subList(int fromIndex, int toIndex) {
1952 synchronized (mutex) {
1953 return new SynchronizedRandomAccessList<>(
1954 list.subList(fromIndex, toIndex), mutex);
1955 }
1956 }
1957

1958 private static final long serialVersionUID = 1530674583602358482L;
1959

1960 /**
1961 * Allows instances to be deserialized in pre-1.4 JREs (which do
1962 * not have SynchronizedRandomAccessList). SynchronizedList has
1963 * a readResolve method that inverts this transformation upon
1964 * deserialization.
1965 */
1966 private Object writeReplace() {
1967 return new SynchronizedList<>(list);
1968 }
1969 }

44

1970

1971 /**
1972 * Returns a synchronized (thread- safe) map backed by the specified
1973 * map. In order to guarantee serial access, it is critical that
1974 * all access to the backing map is accomplished
1975 * through the returned map. <p>
1976 *
1977 * It is imperative that the user manually synchronize on the returned
1978 * map when iterating over any of its collection views:
1979 * <pre>
1980 * Map m = Collections. synchronizedMap(new HashMap());
1981 * ...
1982 * Set s = m. keySet(); // Needn' t be in synchronized block
1983 * ...
1984 * synchronized (m) { // Synchronizing on m, not s!
1985 * Iterator i = s. iterator(); // Must be in synchronized block
1986 * while (i. hasNext())
1987 * foo(i. next());
1988 * }
1989 * </pre>
1990 * Failure to follow this advice may result in non- deterministic behavior.
1991 *
1992 * <p>The returned map will be serializable if the specified map is
1993 * serializable.
1994 *
1995 * @param m the map to be " wrapped" in a synchronized map.
1996 * @return a synchronized view of the specified map.
1997 */
1998 public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1999 return new SynchronizedMap<>(m);
2000 }
2001

2002 /**
2003 * @serial include
2004 */
2005 private static class SynchronizedMap<K,V>
2006 implements Map<K,V>, Serializable {
2007 private static final long serialVersionUID = 1978198479659022715L;
2008

2009 private final Map<K,V> m; // Backing Map
2010 final Object mutex; // Object on which to synchronize
2011

2012 SynchronizedMap(Map<K,V> m) {
2013 if (m==null)
2014 throw new NullPointerException();
2015 this.m = m;

45

2016 mutex = this;
2017 }
2018

2019 SynchronizedMap(Map<K,V> m, Object mutex) {
2020 this.m = m;
2021 this.mutex = mutex;
2022 }
2023

2024 public int size() {
2025 synchronized (mutex) {return m.size();}
2026 }
2027 public boolean isEmpty() {
2028 synchronized (mutex) {return m.isEmpty();}
2029 }
2030 public boolean containsKey(Object key) {
2031 synchronized (mutex) {return m.containsKey(key);}
2032 }
2033 public boolean containsValue(Object value) {
2034 synchronized (mutex) {return m.containsValue(value);}
2035 }
2036 public V get(Object key) {
2037 synchronized (mutex) {return m.get(key);}
2038 }
2039

2040 public V put(K key, V value) {
2041 synchronized (mutex) {return m.put(key, value);}
2042 }
2043 public V remove(Object key) {
2044 synchronized (mutex) {return m.remove(key);}
2045 }
2046 public void putAll(Map<? extends K, ? extends V> map) {
2047 synchronized (mutex) {m.putAll(map);}
2048 }
2049 public void clear() {
2050 synchronized (mutex) {m.clear();}
2051 }
2052

2053 private transient Set<K> keySet = null;
2054 private transient Set<Map.Entry<K,V>> entrySet = null;
2055 private transient Collection<V> values = null;
2056

2057 public Set<K> keySet() {
2058 synchronized (mutex) {
2059 if (keySet==null)
2060 keySet = new SynchronizedSet<>(m.keySet(), mutex);
2061 return keySet;

46

2062 }
2063 }
2064

2065 public Set<Map.Entry<K,V>> entrySet() {
2066 synchronized (mutex) {
2067 if (entrySet==null)
2068 entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2069 return entrySet;
2070 }
2071 }
2072

2073 public Collection<V> values() {
2074 synchronized (mutex) {
2075 if (values==null)
2076 values = new SynchronizedCollection<>(m.values(), mutex);
2077 return values;
2078 }
2079 }
2080

2081 public boolean equals(Object o) {
2082 if (this == o)
2083 return true;
2084 synchronized (mutex) {return m.equals(o);}
2085 }
2086 public int hashCode() {
2087 synchronized (mutex) {return m.hashCode();}
2088 }
2089 public String toString() {
2090 synchronized (mutex) {return m.toString();}
2091 }
2092 private void writeObject(ObjectOutputStream s) throws IOException {
2093 synchronized (mutex) {s.defaultWriteObject();}
2094 }
2095 }
2096

2097 /**
2098 * Returns a synchronized (thread- safe) sorted map backed by the specified
2099 * sorted map. In order to guarantee serial access, it is critical that
2100 * all access to the backing sorted map is accomplished
2101 * through the returned sorted map (or its views). <p>
2102 *
2103 * It is imperative that the user manually synchronize on the returned
2104 * sorted map when iterating over any of its collection views, or the
2105 * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2106 * <tt>tailMap</tt> views.
2107 * <pre>

47

2108 * SortedMap m = Collections. synchronizedSortedMap(new TreeMap());
2109 * ...
2110 * Set s = m. keySet(); // Needn' t be in synchronized block
2111 * ...
2112 * synchronized (m) { // Synchronizing on m, not s!
2113 * Iterator i = s. iterator(); // Must be in synchronized block
2114 * while (i. hasNext())
2115 * foo(i. next());
2116 * }
2117 * </pre>
2118 * or:
2119 * <pre>
2120 * SortedMap m = Collections. synchronizedSortedMap(new TreeMap());
2121 * SortedMap m2 = m. subMap(foo, bar);
2122 * ...
2123 * Set s2 = m2. keySet(); // Needn' t be in synchronized block
2124 * ...
2125 * synchronized (m) { // Synchronizing on m, not m2 or s2!
2126 * Iterator i = s. iterator(); // Must be in synchronized block
2127 * while (i. hasNext())
2128 * foo(i. next());
2129 * }
2130 * </pre>
2131 * Failure to follow this advice may result in non- deterministic behavior.
2132 *
2133 * <p>The returned sorted map will be serializable if the specified
2134 * sorted map is serializable.
2135 *
2136 * @param m the sorted map to be " wrapped" in a synchronized sorted map.
2137 * @return a synchronized view of the specified sorted map.
2138 */
2139 public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2140 return new SynchronizedSortedMap<>(m);
2141 }
2142

2143

2144 /**
2145 * @serial include
2146 */
2147 static class SynchronizedSortedMap<K,V>
2148 extends SynchronizedMap<K,V>
2149 implements SortedMap<K,V>
2150 {
2151 private static final long serialVersionUID = -8798146769416483793L;
2152

2153 private final SortedMap<K,V> sm;

48

2154

2155 SynchronizedSortedMap(SortedMap<K,V> m) {
2156 super(m);
2157 sm = m;
2158 }
2159 SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2160 super(m, mutex);
2161 sm = m;
2162 }
2163

2164 public Comparator<? super K> comparator() {
2165 synchronized (mutex) {return sm.comparator();}
2166 }
2167

2168 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2169 synchronized (mutex) {
2170 return new SynchronizedSortedMap<>(
2171 sm.subMap(fromKey, toKey), mutex);
2172 }
2173 }
2174 public SortedMap<K,V> headMap(K toKey) {
2175 synchronized (mutex) {
2176 return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2177 }
2178 }
2179 public SortedMap<K,V> tailMap(K fromKey) {
2180 synchronized (mutex) {
2181 return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2182 }
2183 }
2184

2185 public K firstKey() {
2186 synchronized (mutex) {return sm.firstKey();}
2187 }
2188 public K lastKey() {
2189 synchronized (mutex) {return sm.lastKey();}
2190 }
2191 }
2192

2193 // Dynamically typesafe collection wrappers
2194

2195 /**
2196 * Returns a dynamically typesafe view of the specified collection.
2197 * Any attempt to insert an element of the wrong type will result in an
2198 * immediate {@link ClassCastException}. Assuming a collection
2199 * contains no incorrectly typed elements prior to the time a

49

2200 * dynamically typesafe view is generated, and that all subsequent
2201 * access to the collection takes place through the view, it is
2202 * <i>guaranteed</i> that the collection cannot contain an incorrectly
2203 * typed element.
2204 *
2205 * <p>The generics mechanism in the language provides compile- time
2206 * (static) type checking, but it is possible to defeat this mechanism
2207 * with unchecked casts. Usually this is not a problem, as the compiler
2208 * issues warnings on all such unchecked operations. There are, however,
2209 * times when static type checking alone is not sufficient. For example,
2210 * suppose a collection is passed to a third- party library and it is
2211 * imperative that the library code not corrupt the collection by
2212 * inserting an element of the wrong type.
2213 *
2214 * <p>Another use of dynamically typesafe views is debugging. Suppose a
2215 * program fails with a {@code ClassCastException}, indicating that an
2216 * incorrectly typed element was put into a parameterized collection.
2217 * Unfortunately, the exception can occur at any time after the erroneous
2218 * element is inserted, so it typically provides little or no information
2219 * as to the real source of the problem. If the problem is reproducible,
2220 * one can quickly determine its source by temporarily modifying the
2221 * program to wrap the collection with a dynamically typesafe view.
2222 * For example, this declaration:
2223 * <pre> {@ code
2224 * Collection<String> c = new HashSet<String>();
2225 * } </pre>
2226 * may be replaced temporarily by this one:
2227 * <pre> {@ code
2228 * Collection<String> c = Collections. checkedCollection(
2229 * new HashSet<String>(), String. class);
2230 * } </pre>
2231 * Running the program again will cause it to fail at the point where
2232 * an incorrectly typed element is inserted into the collection, clearly
2233 * identifying the source of the problem. Once the problem is fixed, the
2234 * modified declaration may be reverted back to the original.
2235 *
2236 * <p>The returned collection does <i>not</i> pass the hashCode and equals
2237 * operations through to the backing collection, but relies on
2238 * {@code Object}' s {@code equals} and {@code hashCode} methods. This
2239 * is necessary to preserve the contracts of these operations in the case
2240 * that the backing collection is a set or a list.
2241 *
2242 * <p>The returned collection will be serializable if the specified
2243 * collection is serializable.
2244 *
2245 * <p>Since {@code null} is considered to be a value of any reference

50

2246 * type, the returned collection permits insertion of null elements
2247 * whenever the backing collection does.
2248 *
2249 * @param c the collection for which a dynamically typesafe view is to be
2250 * returned
2251 * @param type the type of element that {@code c} is permitted to hold
2252 * @return a dynamically typesafe view of the specified collection
2253 * @since 1.5
2254 */
2255 public static <E> Collection<E> checkedCollection(Collection<E> c,
2256 Class<E> type) {
2257 return new CheckedCollection<>(c, type);
2258 }
2259

2260 @SuppressWarnings("unchecked")
2261 static <T> T[] zeroLengthArray(Class<T> type) {
2262 return (T[]) Array.newInstance(type, 0);
2263 }
2264

2265 /**
2266 * @serial include
2267 */
2268 static class CheckedCollection<E> implements Collection<E>, Serializable {
2269 private static final long serialVersionUID = 1578914078182001775L;
2270

2271 final Collection<E> c;
2272 final Class<E> type;
2273

2274 void typeCheck(Object o) {
2275 if (o != null && !type.isInstance(o))
2276 throw new ClassCastException(badElementMsg(o));
2277 }
2278

2279 private String badElementMsg(Object o) {
2280 return "Attempt to insert " + o.getClass() +
2281 " element into collection with element type " + type;
2282 }
2283

2284 CheckedCollection(Collection<E> c, Class<E> type) {
2285 if (c==null || type == null)
2286 throw new NullPointerException();
2287 this.c = c;
2288 this.type = type;
2289 }
2290

2291 public int size() { return c.size(); }

51

2292 public boolean isEmpty() { return c.isEmpty(); }
2293 public boolean contains(Object o) { return c.contains(o); }
2294 public Object[] toArray() { return c.toArray(); }
2295 public <T> T[] toArray(T[] a) { return c.toArray(a); }
2296 public String toString() { return c.toString(); }
2297 public boolean remove(Object o) { return c.remove(o); }
2298 public void clear() { c.clear(); }
2299

2300 public boolean containsAll(Collection<?> coll) {
2301 return c.containsAll(coll);
2302 }
2303 public boolean removeAll(Collection<?> coll) {
2304 return c.removeAll(coll);
2305 }
2306 public boolean retainAll(Collection<?> coll) {
2307 return c.retainAll(coll);
2308 }
2309

2310 public Iterator<E> iterator() {
2311 final Iterator<E> it = c.iterator();
2312 return new Iterator<E>() {
2313 public boolean hasNext() { return it.hasNext(); }
2314 public E next() { return it.next(); }
2315 public void remove() { it.remove(); }};
2316 }
2317

2318 public boolean add(E e) {
2319 typeCheck(e);
2320 return c.add(e);
2321 }
2322

2323 private E[] zeroLengthElementArray = null; // Lazily initialized
2324

2325 private E[] zeroLengthElementArray() {
2326 return zeroLengthElementArray != null ? zeroLengthElementArray :
2327 (zeroLengthElementArray = zeroLengthArray(type));
2328 }
2329

2330 @SuppressWarnings("unchecked")
2331 Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2332 Object[] a = null;
2333 try {
2334 E[] z = zeroLengthElementArray();
2335 a = coll.toArray(z);
2336 // Defend against coll violating the toArray contract
2337 if (a.getClass() != z.getClass())

52

2338 a = Arrays.copyOf(a, a.length, z.getClass());
2339 } catch (ArrayStoreException ignore) {
2340 // To get better and consistent diagnostics,
2341 // we call typeCheck explicitly on each element.
2342 // We call clone() to defend against coll retaining a
2343 // reference to the returned array and storing a bad
2344 // element into it after it has been type checked.
2345 a = coll.toArray().clone();
2346 for (Object o : a)
2347 typeCheck(o);
2348 }
2349 // A slight abuse of the type system, but safe here.
2350 return (Collection<E>) Arrays.asList(a);
2351 }
2352

2353 public boolean addAll(Collection<? extends E> coll) {
2354 // Doing things this way insulates us from concurrent changes
2355 // in the contents of coll and provides all-or-nothing
2356 // semantics (which we wouldn't get if we type-checked each
2357 // element as we added it)
2358 return c.addAll(checkedCopyOf(coll));
2359 }
2360 }
2361

2362 /**
2363 * Returns a dynamically typesafe view of the specified set.
2364 * Any attempt to insert an element of the wrong type will result in
2365 * an immediate {@link ClassCastException}. Assuming a set contains
2366 * no incorrectly typed elements prior to the time a dynamically typesafe
2367 * view is generated, and that all subsequent access to the set
2368 * takes place through the view, it is <i>guaranteed</i> that the
2369 * set cannot contain an incorrectly typed element.
2370 *
2371 * <p>A discussion of the use of dynamically typesafe views may be
2372 * found in the documentation for the {@link #checkedCollection
2373 * checkedCollection} method.
2374 *
2375 * <p>The returned set will be serializable if the specified set is
2376 * serializable.
2377 *
2378 * <p>Since {@code null} is considered to be a value of any reference
2379 * type, the returned set permits insertion of null elements whenever
2380 * the backing set does.
2381 *
2382 * @param s the set for which a dynamically typesafe view is to be
2383 * returned

53

2384 * @param type the type of element that {@code s} is permitted to hold
2385 * @return a dynamically typesafe view of the specified set
2386 * @since 1.5
2387 */
2388 public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2389 return new CheckedSet<>(s, type);
2390 }
2391

2392 /**
2393 * @serial include
2394 */
2395 static class CheckedSet<E> extends CheckedCollection<E>
2396 implements Set<E>, Serializable
2397 {
2398 private static final long serialVersionUID = 4694047833775013803L;
2399

2400 CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2401

2402 public boolean equals(Object o) { return o == this || c.equals(o); }
2403 public int hashCode() { return c.hashCode(); }
2404 }
2405

2406 /**
2407 * Returns a dynamically typesafe view of the specified sorted set.
2408 * Any attempt to insert an element of the wrong type will result in an
2409 * immediate {@link ClassCastException}. Assuming a sorted set
2410 * contains no incorrectly typed elements prior to the time a
2411 * dynamically typesafe view is generated, and that all subsequent
2412 * access to the sorted set takes place through the view, it is
2413 * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2414 * typed element.
2415 *
2416 * <p>A discussion of the use of dynamically typesafe views may be
2417 * found in the documentation for the {@link #checkedCollection
2418 * checkedCollection} method.
2419 *
2420 * <p>The returned sorted set will be serializable if the specified sorted
2421 * set is serializable.
2422 *
2423 * <p>Since {@code null} is considered to be a value of any reference
2424 * type, the returned sorted set permits insertion of null elements
2425 * whenever the backing sorted set does.
2426 *
2427 * @param s the sorted set for which a dynamically typesafe view is to be
2428 * returned
2429 * @param type the type of element that {@code s} is permitted to hold

54

2430 * @return a dynamically typesafe view of the specified sorted set
2431 * @since 1.5
2432 */
2433 public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2434 Class<E> type) {
2435 return new CheckedSortedSet<>(s, type);
2436 }
2437

2438 /**
2439 * @serial include
2440 */
2441 static class CheckedSortedSet<E> extends CheckedSet<E>
2442 implements SortedSet<E>, Serializable
2443 {
2444 private static final long serialVersionUID = 1599911165492914959L;
2445 private final SortedSet<E> ss;
2446

2447 CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2448 super(s, type);
2449 ss = s;
2450 }
2451

2452 public Comparator<? super E> comparator() { return ss.comparator(); }
2453 public E first() { return ss.first(); }
2454 public E last() { return ss.last(); }
2455

2456 public SortedSet<E> subSet(E fromElement, E toElement) {
2457 return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2458 }
2459 public SortedSet<E> headSet(E toElement) {
2460 return checkedSortedSet(ss.headSet(toElement), type);
2461 }
2462 public SortedSet<E> tailSet(E fromElement) {
2463 return checkedSortedSet(ss.tailSet(fromElement), type);
2464 }
2465 }
2466

2467 /**
2468 * Returns a dynamically typesafe view of the specified list.
2469 * Any attempt to insert an element of the wrong type will result in
2470 * an immediate {@link ClassCastException}. Assuming a list contains
2471 * no incorrectly typed elements prior to the time a dynamically typesafe
2472 * view is generated, and that all subsequent access to the list
2473 * takes place through the view, it is <i>guaranteed</i> that the
2474 * list cannot contain an incorrectly typed element.
2475 *

55

2476 * <p>A discussion of the use of dynamically typesafe views may be
2477 * found in the documentation for the {@link #checkedCollection
2478 * checkedCollection} method.
2479 *
2480 * <p>The returned list will be serializable if the specified list
2481 * is serializable.
2482 *
2483 * <p>Since {@code null} is considered to be a value of any reference
2484 * type, the returned list permits insertion of null elements whenever
2485 * the backing list does.
2486 *
2487 * @param list the list for which a dynamically typesafe view is to be
2488 * returned
2489 * @param type the type of element that {@code list} is permitted to hold
2490 * @return a dynamically typesafe view of the specified list
2491 * @since 1.5
2492 */
2493 public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2494 return (list instanceof RandomAccess ?
2495 new CheckedRandomAccessList<>(list, type) :
2496 new CheckedList<>(list, type));
2497 }
2498

2499 /**
2500 * @serial include
2501 */
2502 static class CheckedList<E>
2503 extends CheckedCollection<E>
2504 implements List<E>
2505 {
2506 private static final long serialVersionUID = 65247728283967356L;
2507 final List<E> list;
2508

2509 CheckedList(List<E> list, Class<E> type) {
2510 super(list, type);
2511 this.list = list;
2512 }
2513

2514 public boolean equals(Object o) { return o == this || list.equals(o); }
2515 public int hashCode() { return list.hashCode(); }
2516 public E get(int index) { return list.get(index); }
2517 public E remove(int index) { return list.remove(index); }
2518 public int indexOf(Object o) { return list.indexOf(o); }
2519 public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2520

2521 public E set(int index, E element) {

56

2522 typeCheck(element);
2523 return list.set(index, element);
2524 }
2525

2526 public void add(int index, E element) {
2527 typeCheck(element);
2528 list.add(index, element);
2529 }
2530

2531 public boolean addAll(int index, Collection<? extends E> c) {
2532 return list.addAll(index, checkedCopyOf(c));
2533 }
2534 public ListIterator<E> listIterator() { return listIterator(0); }
2535

2536 public ListIterator<E> listIterator(final int index) {
2537 final ListIterator<E> i = list.listIterator(index);
2538

2539 return new ListIterator<E>() {
2540 public boolean hasNext() { return i.hasNext(); }
2541 public E next() { return i.next(); }
2542 public boolean hasPrevious() { return i.hasPrevious(); }
2543 public E previous() { return i.previous(); }
2544 public int nextIndex() { return i.nextIndex(); }
2545 public int previousIndex() { return i.previousIndex(); }
2546 public void remove() { i.remove(); }
2547

2548 public void set(E e) {
2549 typeCheck(e);
2550 i.set(e);
2551 }
2552

2553 public void add(E e) {
2554 typeCheck(e);
2555 i.add(e);
2556 }
2557 };
2558 }
2559

2560 public List<E> subList(int fromIndex, int toIndex) {
2561 return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2562 }
2563 }
2564

2565 /**
2566 * @serial include
2567 */

57

2568 static class CheckedRandomAccessList<E> extends CheckedList<E>
2569 implements RandomAccess
2570 {
2571 private static final long serialVersionUID = 1638200125423088369L;
2572

2573 CheckedRandomAccessList(List<E> list, Class<E> type) {
2574 super(list, type);
2575 }
2576

2577 public List<E> subList(int fromIndex, int toIndex) {
2578 return new CheckedRandomAccessList<>(
2579 list.subList(fromIndex, toIndex), type);
2580 }
2581 }
2582

2583 /**
2584 * Returns a dynamically typesafe view of the specified map.
2585 * Any attempt to insert a mapping whose key or value have the wrong
2586 * type will result in an immediate {@link ClassCastException}.
2587 * Similarly, any attempt to modify the value currently associated with
2588 * a key will result in an immediate {@link ClassCastException},
2589 * whether the modification is attempted directly through the map
2590 * itself, or through a {@link Map.Entry} instance obtained from the
2591 * map' s {@link Map#entrySet() entry set} view.
2592 *
2593 * <p>Assuming a map contains no incorrectly typed keys or values
2594 * prior to the time a dynamically typesafe view is generated, and
2595 * that all subsequent access to the map takes place through the view
2596 * (or one of its collection views), it is <i>guaranteed</i> that the
2597 * map cannot contain an incorrectly typed key or value.
2598 *
2599 * <p>A discussion of the use of dynamically typesafe views may be
2600 * found in the documentation for the {@link #checkedCollection
2601 * checkedCollection} method.
2602 *
2603 * <p>The returned map will be serializable if the specified map is
2604 * serializable.
2605 *
2606 * <p>Since {@code null} is considered to be a value of any reference
2607 * type, the returned map permits insertion of null keys or values
2608 * whenever the backing map does.
2609 *
2610 * @param m the map for which a dynamically typesafe view is to be
2611 * returned
2612 * @param keyType the type of key that {@code m} is permitted to hold
2613 * @param valueType the type of value that {@code m} is permitted to hold

58

2614 * @return a dynamically typesafe view of the specified map
2615 * @since 1.5
2616 */
2617 public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2618 Class<K> keyType,
2619 Class<V> valueType) {
2620 return new CheckedMap<>(m, keyType, valueType);
2621 }
2622

2623

2624 /**
2625 * @serial include
2626 */
2627 private static class CheckedMap<K,V>
2628 implements Map<K,V>, Serializable
2629 {
2630 private static final long serialVersionUID = 5742860141034234728L;
2631

2632 private final Map<K, V> m;
2633 final Class<K> keyType;
2634 final Class<V> valueType;
2635

2636 private void typeCheck(Object key, Object value) {
2637 if (key != null && !keyType.isInstance(key))
2638 throw new ClassCastException(badKeyMsg(key));
2639

2640 if (value != null && !valueType.isInstance(value))
2641 throw new ClassCastException(badValueMsg(value));
2642 }
2643

2644 private String badKeyMsg(Object key) {
2645 return "Attempt to insert " + key.getClass() +
2646 " key into map with key type " + keyType;
2647 }
2648

2649 private String badValueMsg(Object value) {
2650 return "Attempt to insert " + value.getClass() +
2651 " value into map with value type " + valueType;
2652 }
2653

2654 CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2655 if (m == null || keyType == null || valueType == null)
2656 throw new NullPointerException();
2657 this.m = m;
2658 this.keyType = keyType;
2659 this.valueType = valueType;

59

2660 }
2661

2662 public int size() { return m.size(); }
2663 public boolean isEmpty() { return m.isEmpty(); }
2664 public boolean containsKey(Object key) { return m.containsKey(key); }
2665 public boolean containsValue(Object v) { return m.containsValue(v); }
2666 public V get(Object key) { return m.get(key); }
2667 public V remove(Object key) { return m.remove(key); }
2668 public void clear() { m.clear(); }
2669 public Set<K> keySet() { return m.keySet(); }
2670 public Collection<V> values() { return m.values(); }
2671 public boolean equals(Object o) { return o == this || m.equals(o); }
2672 public int hashCode() { return m.hashCode(); }
2673 public String toString() { return m.toString(); }
2674

2675 public V put(K key, V value) {
2676 typeCheck(key, value);
2677 return m.put(key, value);
2678 }
2679

2680 @SuppressWarnings("unchecked")
2681 public void putAll(Map<? extends K, ? extends V> t) {
2682 // Satisfy the following goals:
2683 // - good diagnostics in case of type mismatch
2684 // - all-or-nothing semantics
2685 // - protection from malicious t
2686 // - correct behavior if t is a concurrent map
2687 Object[] entries = t.entrySet().toArray();
2688 List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
2689 for (Object o : entries) {
2690 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2691 Object k = e.getKey();
2692 Object v = e.getValue();
2693 typeCheck(k, v);
2694 checked.add(
2695 new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
2696 }
2697 for (Map.Entry<K,V> e : checked)
2698 m.put(e.getKey(), e.getValue());
2699 }
2700

2701 private transient Set<Map.Entry<K,V>> entrySet = null;
2702

2703 public Set<Map.Entry<K,V>> entrySet() {
2704 if (entrySet==null)
2705 entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);

60

2706 return entrySet;
2707 }
2708

2709 /**
2710 * We need this class in addition to CheckedSet as Map. Entry permits
2711 * modification of the backing Map via the setValue operation. This
2712 * class is subtle: there are many possible attacks that must be
2713 * thwarted.
2714 *
2715 * @serial exclude
2716 */
2717 static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2718 private final Set<Map.Entry<K,V>> s;
2719 private final Class<V> valueType;
2720

2721 CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2722 this.s = s;
2723 this.valueType = valueType;
2724 }
2725

2726 public int size() { return s.size(); }
2727 public boolean isEmpty() { return s.isEmpty(); }
2728 public String toString() { return s.toString(); }
2729 public int hashCode() { return s.hashCode(); }
2730 public void clear() { s.clear(); }
2731

2732 public boolean add(Map.Entry<K, V> e) {
2733 throw new UnsupportedOperationException();
2734 }
2735 public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2736 throw new UnsupportedOperationException();
2737 }
2738

2739 public Iterator<Map.Entry<K,V>> iterator() {
2740 final Iterator<Map.Entry<K, V>> i = s.iterator();
2741 final Class<V> valueType = this.valueType;
2742

2743 return new Iterator<Map.Entry<K,V>>() {
2744 public boolean hasNext() { return i.hasNext(); }
2745 public void remove() { i.remove(); }
2746

2747 public Map.Entry<K,V> next() {
2748 return checkedEntry(i.next(), valueType);
2749 }
2750 };
2751 }

61

2752

2753 @SuppressWarnings("unchecked")
2754 public Object[] toArray() {
2755 Object[] source = s.toArray();
2756

2757 /*
2758 * Ensure that we don't get an ArrayStoreException even if
2759 * s.toArray returns an array of something other than Object
2760 */
2761 Object[] dest = (CheckedEntry.class.isInstance(
2762 source.getClass().getComponentType()) ? source :
2763 new Object[source.length]);
2764

2765 for (int i = 0; i < source.length; i++)
2766 dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2767 valueType);
2768 return dest;
2769 }
2770

2771 @SuppressWarnings("unchecked")
2772 public <T> T[] toArray(T[] a) {
2773 // We don't pass a to s.toArray, to avoid window of
2774 // vulnerability wherein an unscrupulous multithreaded client
2775 // could get his hands on raw (unwrapped) Entries from s.
2776 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2777

2778 for (int i=0; i<arr.length; i++)
2779 arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2780 valueType);
2781 if (arr.length > a.length)
2782 return arr;
2783

2784 System.arraycopy(arr, 0, a, 0, arr.length);
2785 if (a.length > arr.length)
2786 a[arr.length] = null;
2787 return a;
2788 }
2789

2790 /**
2791 * This method is overridden to protect the backing set against
2792 * an object with a nefarious equals function that senses
2793 * that the equality- candidate is Map. Entry and calls its
2794 * setValue method.
2795 */
2796 public boolean contains(Object o) {
2797 if (!(o instanceof Map.Entry))

62

2798 return false;
2799 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2800 return s.contains(
2801 (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2802 }
2803

2804 /**
2805 * The bulk collection methods are overridden to protect
2806 * against an unscrupulous collection whose contains(Object o)
2807 * method senses when o is a Map. Entry, and calls o. setValue.
2808 */
2809 public boolean containsAll(Collection<?> c) {
2810 for (Object o : c)
2811 if (!contains(o)) // Invokes safe contains() above
2812 return false;
2813 return true;
2814 }
2815

2816 public boolean remove(Object o) {
2817 if (!(o instanceof Map.Entry))
2818 return false;
2819 return s.remove(new AbstractMap.SimpleImmutableEntry
2820 <>((Map.Entry<?,?>)o));
2821 }
2822

2823 public boolean removeAll(Collection<?> c) {
2824 return batchRemove(c, false);
2825 }
2826 public boolean retainAll(Collection<?> c) {
2827 return batchRemove(c, true);
2828 }
2829 private boolean batchRemove(Collection<?> c, boolean complement) {
2830 boolean modified = false;
2831 Iterator<Map.Entry<K,V>> it = iterator();
2832 while (it.hasNext()) {
2833 if (c.contains(it.next()) != complement) {
2834 it.remove();
2835 modified = true;
2836 }
2837 }
2838 return modified;
2839 }
2840

2841 public boolean equals(Object o) {
2842 if (o == this)
2843 return true;

63

2844 if (!(o instanceof Set))
2845 return false;
2846 Set<?> that = (Set<?>) o;
2847 return that.size() == s.size()
2848 && containsAll(that); // Invokes safe containsAll() above
2849 }
2850

2851 static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2852 Class<T> valueType) {
2853 return new CheckedEntry<>(e, valueType);
2854 }
2855

2856 /**
2857 * This " wrapper class" serves two purposes: it prevents
2858 * the client from modifying the backing Map, by short- circuiting
2859 * the setValue method, and it protects the backing Map against
2860 * an ill- behaved Map. Entry that attempts to modify another
2861 * Map. Entry when asked to perform an equality check.
2862 */
2863 private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2864 private final Map.Entry<K, V> e;
2865 private final Class<T> valueType;
2866

2867 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2868 this.e = e;
2869 this.valueType = valueType;
2870 }
2871

2872 public K getKey() { return e.getKey(); }
2873 public V getValue() { return e.getValue(); }
2874 public int hashCode() { return e.hashCode(); }
2875 public String toString() { return e.toString(); }
2876

2877 public V setValue(V value) {
2878 if (value != null && !valueType.isInstance(value))
2879 throw new ClassCastException(badValueMsg(value));
2880 return e.setValue(value);
2881 }
2882

2883 private String badValueMsg(Object value) {
2884 return "Attempt to insert " + value.getClass() +
2885 " value into map with value type " + valueType;
2886 }
2887

2888 public boolean equals(Object o) {
2889 if (o == this)

64

2890 return true;
2891 if (!(o instanceof Map.Entry))
2892 return false;
2893 return e.equals(new AbstractMap.SimpleImmutableEntry
2894 <>((Map.Entry<?,?>)o));
2895 }
2896 }
2897 }
2898 }
2899

2900 /**
2901 * Returns a dynamically typesafe view of the specified sorted map.
2902 * Any attempt to insert a mapping whose key or value have the wrong
2903 * type will result in an immediate {@link ClassCastException}.
2904 * Similarly, any attempt to modify the value currently associated with
2905 * a key will result in an immediate {@link ClassCastException},
2906 * whether the modification is attempted directly through the map
2907 * itself, or through a {@link Map.Entry} instance obtained from the
2908 * map' s {@link Map#entrySet() entry set} view.
2909 *
2910 * <p>Assuming a map contains no incorrectly typed keys or values
2911 * prior to the time a dynamically typesafe view is generated, and
2912 * that all subsequent access to the map takes place through the view
2913 * (or one of its collection views), it is <i>guaranteed</i> that the
2914 * map cannot contain an incorrectly typed key or value.
2915 *
2916 * <p>A discussion of the use of dynamically typesafe views may be
2917 * found in the documentation for the {@link #checkedCollection
2918 * checkedCollection} method.
2919 *
2920 * <p>The returned map will be serializable if the specified map is
2921 * serializable.
2922 *
2923 * <p>Since {@code null} is considered to be a value of any reference
2924 * type, the returned map permits insertion of null keys or values
2925 * whenever the backing map does.
2926 *
2927 * @param m the map for which a dynamically typesafe view is to be
2928 * returned
2929 * @param keyType the type of key that {@code m} is permitted to hold
2930 * @param valueType the type of value that {@code m} is permitted to hold
2931 * @return a dynamically typesafe view of the specified map
2932 * @since 1.5
2933 */
2934 public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2935 Class<K> keyType,

65

2936 Class<V> valueType) {
2937 return new CheckedSortedMap<>(m, keyType, valueType);
2938 }
2939

2940 /**
2941 * @serial include
2942 */
2943 static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2944 implements SortedMap<K,V>, Serializable
2945 {
2946 private static final long serialVersionUID = 1599671320688067438L;
2947

2948 private final SortedMap<K, V> sm;
2949

2950 CheckedSortedMap(SortedMap<K, V> m,
2951 Class<K> keyType, Class<V> valueType) {
2952 super(m, keyType, valueType);
2953 sm = m;
2954 }
2955

2956 public Comparator<? super K> comparator() { return sm.comparator(); }
2957 public K firstKey() { return sm.firstKey(); }
2958 public K lastKey() { return sm.lastKey(); }
2959

2960 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2961 return checkedSortedMap(sm.subMap(fromKey, toKey),
2962 keyType, valueType);
2963 }
2964 public SortedMap<K,V> headMap(K toKey) {
2965 return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
2966 }
2967 public SortedMap<K,V> tailMap(K fromKey) {
2968 return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
2969 }
2970 }
2971

2972 // Empty collections
2973

2974 /**
2975 * Returns an iterator that has no elements. More precisely,
2976 *
2977 * <ul compact>
2978 *
2979 * {@link Iterator#hasNext hasNext} always returns {@ code
2980 * false}.
2981 *

66

2982 * {@link Iterator#next next} always throws {@ link
2983 * NoSuchElementException}.
2984 *
2985 * {@link Iterator#remove remove} always throws {@ link
2986 * IllegalStateException}.
2987 *
2988 *
2989 *
2990 * <p>Implementations of this method are permitted, but not
2991 * required, to return the same object from multiple invocations.
2992 *
2993 * @return an empty iterator
2994 * @since 1.7
2995 */
2996 @SuppressWarnings("unchecked")
2997 public static <T> Iterator<T> emptyIterator() {
2998 return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
2999 }
3000

3001 private static class EmptyIterator<E> implements Iterator<E> {
3002 static final EmptyIterator<Object> EMPTY_ITERATOR
3003 = new EmptyIterator<>();
3004

3005 public boolean hasNext() { return false; }
3006 public E next() { throw new NoSuchElementException(); }
3007 public void remove() { throw new IllegalStateException(); }
3008 }
3009

3010 /**
3011 * Returns a list iterator that has no elements. More precisely,
3012 *
3013 * <ul compact>
3014 *
3015 * {@link Iterator#hasNext hasNext} and {@ link
3016 * ListIterator# hasPrevious hasPrevious} always return {@ code
3017 * false}.
3018 *
3019 * {@link Iterator#next next} and {@link ListIterator#previous
3020 * previous} always throw {@link NoSuchElementException}.
3021 *
3022 * {@link Iterator#remove remove} and {@link ListIterator#set
3023 * set} always throw {@link IllegalStateException}.
3024 *
3025 * {@link ListIterator#add add} always throws {@ link
3026 * UnsupportedOperationException}.
3027 *

67

3028 * {@link ListIterator#nextIndex nextIndex} always returns
3029 * {@code 0} .
3030 *
3031 * {@link ListIterator#previousIndex previousIndex} always
3032 * returns {@code -1}.
3033 *
3034 *
3035 *
3036 * <p>Implementations of this method are permitted, but not
3037 * required, to return the same object from multiple invocations.
3038 *
3039 * @return an empty list iterator
3040 * @since 1.7
3041 */
3042 @SuppressWarnings("unchecked")
3043 public static <T> ListIterator<T> emptyListIterator() {
3044 return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3045 }
3046

3047 private static class EmptyListIterator<E>
3048 extends EmptyIterator<E>
3049 implements ListIterator<E>
3050 {
3051 static final EmptyListIterator<Object> EMPTY_ITERATOR
3052 = new EmptyListIterator<>();
3053

3054 public boolean hasPrevious() { return false; }
3055 public E previous() { throw new NoSuchElementException(); }
3056 public int nextIndex() { return 0; }
3057 public int previousIndex() { return -1; }
3058 public void set(E e) { throw new IllegalStateException(); }
3059 public void add(E e) { throw new UnsupportedOperationException(); }
3060 }
3061

3062 /**
3063 * Returns an enumeration that has no elements. More precisely,
3064 *
3065 * <ul compact>
3066 *
3067 * {@link Enumeration#hasMoreElements hasMoreElements} always
3068 * returns {@code false}.
3069 *
3070 * {@link Enumeration#nextElement nextElement} always throws
3071 * {@link NoSuchElementException}.
3072 *
3073 *

68

3074 *
3075 * <p>Implementations of this method are permitted, but not
3076 * required, to return the same object from multiple invocations.
3077 *
3078 * @return an empty enumeration
3079 * @since 1.7
3080 */
3081 @SuppressWarnings("unchecked")
3082 public static <T> Enumeration<T> emptyEnumeration() {
3083 return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3084 }
3085

3086 private static class EmptyEnumeration<E> implements Enumeration<E> {
3087 static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3088 = new EmptyEnumeration<>();
3089

3090 public boolean hasMoreElements() { return false; }
3091 public E nextElement() { throw new NoSuchElementException(); }
3092 }
3093

3094 /**
3095 * The empty set (immutable). This set is serializable.
3096 *
3097 * @see #emptySet()
3098 */
3099 @SuppressWarnings("unchecked")
3100 public static final Set EMPTY_SET = new EmptySet<>();
3101

3102 /**
3103 * Returns the empty set (immutable). This set is serializable.
3104 * Unlike the like- named field, this method is parameterized.
3105 *
3106 * <p>This example illustrates the type- safe way to obtain an empty set:
3107 * <pre>
3108 * Set<String> s = Collections. emptySet();
3109 * </pre>
3110 * Implementation note: Implementations of this method need not
3111 * create a separate <tt>Set</tt> object for each call. Using this
3112 * method is likely to have comparable cost to using the like- named
3113 * field. (Unlike this method, the field does not provide type safety.)
3114 *
3115 * @see #EMPTY_SET
3116 * @since 1.5
3117 */
3118 @SuppressWarnings("unchecked")
3119 public static final <T> Set<T> emptySet() {

69

3120 return (Set<T>) EMPTY_SET;
3121 }
3122

3123 /**
3124 * @serial include
3125 */
3126 private static class EmptySet<E>
3127 extends AbstractSet<E>
3128 implements Serializable
3129 {
3130 private static final long serialVersionUID = 1582296315990362920L;
3131

3132 public Iterator<E> iterator() { return emptyIterator(); }
3133

3134 public int size() {return 0;}
3135 public boolean isEmpty() {return true;}
3136

3137 public boolean contains(Object obj) {return false;}
3138 public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3139

3140 public Object[] toArray() { return new Object[0]; }
3141

3142 public <T> T[] toArray(T[] a) {
3143 if (a.length > 0)
3144 a[0] = null;
3145 return a;
3146 }
3147

3148 // Preserves singleton property
3149 private Object readResolve() {
3150 return EMPTY_SET;
3151 }
3152 }
3153

3154 /**
3155 * The empty list (immutable). This list is serializable.
3156 *
3157 * @see #emptyList()
3158 */
3159 @SuppressWarnings("unchecked")
3160 public static final List EMPTY_LIST = new EmptyList<>();
3161

3162 /**
3163 * Returns the empty list (immutable). This list is serializable.
3164 *
3165 * <p>This example illustrates the type- safe way to obtain an empty list:

70

3166 * <pre>
3167 * List<String> s = Collections. emptyList();
3168 * </pre>
3169 * Implementation note: Implementations of this method need not
3170 * create a separate <tt>List</tt> object for each call. Using this
3171 * method is likely to have comparable cost to using the like- named
3172 * field. (Unlike this method, the field does not provide type safety.)
3173 *
3174 * @see #EMPTY_LIST
3175 * @since 1.5
3176 */
3177 @SuppressWarnings("unchecked")
3178 public static final <T> List<T> emptyList() {
3179 return (List<T>) EMPTY_LIST;
3180 }
3181

3182 /**
3183 * @serial include
3184 */
3185 private static class EmptyList<E>
3186 extends AbstractList<E>
3187 implements RandomAccess, Serializable {
3188 private static final long serialVersionUID = 8842843931221139166L;
3189

3190 public Iterator<E> iterator() {
3191 return emptyIterator();
3192 }
3193 public ListIterator<E> listIterator() {
3194 return emptyListIterator();
3195 }
3196

3197 public int size() {return 0;}
3198 public boolean isEmpty() {return true;}
3199

3200 public boolean contains(Object obj) {return false;}
3201 public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3202

3203 public Object[] toArray() { return new Object[0]; }
3204

3205 public <T> T[] toArray(T[] a) {
3206 if (a.length > 0)
3207 a[0] = null;
3208 return a;
3209 }
3210

3211 public E get(int index) {

71

3212 throw new IndexOutOfBoundsException("Index: "+index);
3213 }
3214

3215 public boolean equals(Object o) {
3216 return (o instanceof List) && ((List<?>)o).isEmpty();
3217 }
3218

3219 public int hashCode() { return 1; }
3220

3221 // Preserves singleton property
3222 private Object readResolve() {
3223 return EMPTY_LIST;
3224 }
3225 }
3226

3227 /**
3228 * The empty map (immutable). This map is serializable.
3229 *
3230 * @see #emptyMap()
3231 * @since 1.3
3232 */
3233 @SuppressWarnings("unchecked")
3234 public static final Map EMPTY_MAP = new EmptyMap<>();
3235

3236 /**
3237 * Returns the empty map (immutable). This map is serializable.
3238 *
3239 * <p>This example illustrates the type- safe way to obtain an empty set:
3240 * <pre>
3241 * Map<String, Date> s = Collections. emptyMap();
3242 * </pre>
3243 * Implementation note: Implementations of this method need not
3244 * create a separate <tt>Map</tt> object for each call. Using this
3245 * method is likely to have comparable cost to using the like- named
3246 * field. (Unlike this method, the field does not provide type safety.)
3247 *
3248 * @see #EMPTY_MAP
3249 * @since 1.5
3250 */
3251 @SuppressWarnings("unchecked")
3252 public static final <K,V> Map<K,V> emptyMap() {
3253 return (Map<K,V>) EMPTY_MAP;
3254 }
3255

3256 /**
3257 * @serial include

72

3258 */
3259 private static class EmptyMap<K,V>
3260 extends AbstractMap<K,V>
3261 implements Serializable
3262 {
3263 private static final long serialVersionUID = 6428348081105594320L;
3264

3265 public int size() {return 0;}
3266 public boolean isEmpty() {return true;}
3267 public boolean containsKey(Object key) {return false;}
3268 public boolean containsValue(Object value) {return false;}
3269 public V get(Object key) {return null;}
3270 public Set<K> keySet() {return emptySet();}
3271 public Collection<V> values() {return emptySet();}
3272 public Set<Map.Entry<K,V>> entrySet() {return emptySet();}
3273

3274 public boolean equals(Object o) {
3275 return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3276 }
3277

3278 public int hashCode() {return 0;}
3279

3280 // Preserves singleton property
3281 private Object readResolve() {
3282 return EMPTY_MAP;
3283 }
3284 }
3285

3286 // Singleton collections
3287

3288 /**
3289 * Returns an immutable set containing only the specified object.
3290 * The returned set is serializable.
3291 *
3292 * @param o the sole object to be stored in the returned set.
3293 * @return an immutable set containing only the specified object.
3294 */
3295 public static <T> Set<T> singleton(T o) {
3296 return new SingletonSet<>(o);
3297 }
3298

3299 static <E> Iterator<E> singletonIterator(final E e) {
3300 return new Iterator<E>() {
3301 private boolean hasNext = true;
3302 public boolean hasNext() {
3303 return hasNext;

73

3304 }
3305 public E next() {
3306 if (hasNext) {
3307 hasNext = false;
3308 return e;
3309 }
3310 throw new NoSuchElementException();
3311 }
3312 public void remove() {
3313 throw new UnsupportedOperationException();
3314 }
3315 };
3316 }
3317

3318 /**
3319 * @serial include
3320 */
3321 private static class SingletonSet<E>
3322 extends AbstractSet<E>
3323 implements Serializable
3324 {
3325 private static final long serialVersionUID = 3193687207550431679L;
3326

3327 private final E element;
3328

3329 SingletonSet(E e) {element = e;}
3330

3331 public Iterator<E> iterator() {
3332 return singletonIterator(element);
3333 }
3334

3335 public int size() {return 1;}
3336

3337 public boolean contains(Object o) {return eq(o, element);}
3338 }
3339

3340 /**
3341 * Returns an immutable list containing only the specified object.
3342 * The returned list is serializable.
3343 *
3344 * @param o the sole object to be stored in the returned list.
3345 * @return an immutable list containing only the specified object.
3346 * @since 1.3
3347 */
3348 public static <T> List<T> singletonList(T o) {
3349 return new SingletonList<>(o);

74

3350 }
3351

3352 /**
3353 * @serial include
3354 */
3355 private static class SingletonList<E>
3356 extends AbstractList<E>
3357 implements RandomAccess, Serializable {
3358

3359 private static final long serialVersionUID = 3093736618740652951L;
3360

3361 private final E element;
3362

3363 SingletonList(E obj) {element = obj;}
3364

3365 public Iterator<E> iterator() {
3366 return singletonIterator(element);
3367 }
3368

3369 public int size() {return 1;}
3370

3371 public boolean contains(Object obj) {return eq(obj, element);}
3372

3373 public E get(int index) {
3374 if (index != 0)
3375 throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3376 return element;
3377 }
3378 }
3379

3380 /**
3381 * Returns an immutable map, mapping only the specified key to the
3382 * specified value. The returned map is serializable.
3383 *
3384 * @param key the sole key to be stored in the returned map.
3385 * @param value the value to which the returned map maps <tt>key</tt>.
3386 * @return an immutable map containing only the specified key- value
3387 * mapping.
3388 * @since 1.3
3389 */
3390 public static <K,V> Map<K,V> singletonMap(K key, V value) {
3391 return new SingletonMap<>(key, value);
3392 }
3393

3394 /**
3395 * @serial include

75

3396 */
3397 private static class SingletonMap<K,V>
3398 extends AbstractMap<K,V>
3399 implements Serializable {
3400 private static final long serialVersionUID = -6979724477215052911L;
3401

3402 private final K k;
3403 private final V v;
3404

3405 SingletonMap(K key, V value) {
3406 k = key;
3407 v = value;
3408 }
3409

3410 public int size() {return 1;}
3411

3412 public boolean isEmpty() {return false;}
3413

3414 public boolean containsKey(Object key) {return eq(key, k);}
3415

3416 public boolean containsValue(Object value) {return eq(value, v);}
3417

3418 public V get(Object key) {return (eq(key, k) ? v : null);}
3419

3420 private transient Set<K> keySet = null;
3421 private transient Set<Map.Entry<K,V>> entrySet = null;
3422 private transient Collection<V> values = null;
3423

3424 public Set<K> keySet() {
3425 if (keySet==null)
3426 keySet = singleton(k);
3427 return keySet;
3428 }
3429

3430 public Set<Map.Entry<K,V>> entrySet() {
3431 if (entrySet==null)
3432 entrySet = Collections.<Map.Entry<K,V>>singleton(
3433 new SimpleImmutableEntry<>(k, v));
3434 return entrySet;
3435 }
3436

3437 public Collection<V> values() {
3438 if (values==null)
3439 values = singleton(v);
3440 return values;
3441 }

76

3442

3443 }
3444

3445 // Miscellaneous
3446

3447 /**
3448 * Returns an immutable list consisting of <tt>n</tt> copies of the
3449 * specified object. The newly allocated data object is tiny (it contains
3450 * a single reference to the data object). This method is useful in
3451 * combination with the <tt>List. addAll</tt> method to grow lists.
3452 * The returned list is serializable.
3453 *
3454 * @param n the number of elements in the returned list.
3455 * @param o the element to appear repeatedly in the returned list.
3456 * @return an immutable list consisting of <tt>n</tt> copies of the
3457 * specified object.
3458 * @throws IllegalArgumentException if {@code n < 0}
3459 * @see List#addAll(Collection)
3460 * @see List#addAll(int, Collection)
3461 */
3462 public static <T> List<T> nCopies(int n, T o) {
3463 if (n < 0)
3464 throw new IllegalArgumentException("List length = " + n);
3465 return new CopiesList<>(n, o);
3466 }
3467

3468 /**
3469 * @serial include
3470 */
3471 private static class CopiesList<E>
3472 extends AbstractList<E>
3473 implements RandomAccess, Serializable
3474 {
3475 private static final long serialVersionUID = 2739099268398711800L;
3476

3477 final int n;
3478 final E element;
3479

3480 CopiesList(int n, E e) {
3481 assert n >= 0;
3482 this.n = n;
3483 element = e;
3484 }
3485

3486 public int size() {
3487 return n;

77

3488 }
3489

3490 public boolean contains(Object obj) {
3491 return n != 0 && eq(obj, element);
3492 }
3493

3494 public int indexOf(Object o) {
3495 return contains(o) ? 0 : -1;
3496 }
3497

3498 public int lastIndexOf(Object o) {
3499 return contains(o) ? n - 1 : -1;
3500 }
3501

3502 public E get(int index) {
3503 if (index < 0 || index >= n)
3504 throw new IndexOutOfBoundsException("Index: "+index+
3505 ", Size: "+n);
3506 return element;
3507 }
3508

3509 public Object[] toArray() {
3510 final Object[] a = new Object[n];
3511 if (element != null)
3512 Arrays.fill(a, 0, n, element);
3513 return a;
3514 }
3515

3516 public <T> T[] toArray(T[] a) {
3517 final int n = this.n;
3518 if (a.length < n) {
3519 a = (T[])java.lang.reflect.Array
3520 .newInstance(a.getClass().getComponentType(), n);
3521 if (element != null)
3522 Arrays.fill(a, 0, n, element);
3523 } else {
3524 Arrays.fill(a, 0, n, element);
3525 if (a.length > n)
3526 a[n] = null;
3527 }
3528 return a;
3529 }
3530

3531 public List<E> subList(int fromIndex, int toIndex) {
3532 if (fromIndex < 0)
3533 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);

78

3534 if (toIndex > n)
3535 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3536 if (fromIndex > toIndex)
3537 throw new IllegalArgumentException("fromIndex(" + fromIndex +
3538 ") > toIndex(" + toIndex + ")");
3539 return new CopiesList<>(toIndex - fromIndex, element);
3540 }
3541 }
3542

3543 /**
3544 * Returns a comparator that imposes the reverse of the natural
3545 * ordering on a collection of objects that implement the
3546 * {@code Comparable} interface. (The natural ordering is the ordering
3547 * imposed by the objects' own {@code compareTo} method.) This enables a
3548 * simple idiom for sorting (or maintaining) collections (or arrays) of
3549 * objects that implement the {@code Comparable} interface in
3550 * reverse- natural- order. For example, suppose {@code a} is an array of
3551 * strings. Then: <pre>
3552 * Arrays. sort(a, Collections. reverseOrder());
3553 * </pre> sorts the array in reverse- lexicographic (alphabetical) order. <p>
3554 *
3555 * The returned comparator is serializable.
3556 *
3557 * @return A comparator that imposes the reverse of the <i>natural
3558 * ordering</i> on a collection of objects that implement
3559 * the <tt>Comparable</tt> interface.
3560 * @see Comparable
3561 */
3562 public static <T> Comparator<T> reverseOrder() {
3563 return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3564 }
3565

3566 /**
3567 * @serial include
3568 */
3569 private static class ReverseComparator
3570 implements Comparator<Comparable<Object>>, Serializable {
3571

3572 private static final long serialVersionUID = 7207038068494060240L;
3573

3574 static final ReverseComparator REVERSE_ORDER
3575 = new ReverseComparator();
3576

3577 public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3578 return c2.compareTo(c1);
3579 }

79

3580

3581 private Object readResolve() { return reverseOrder(); }
3582 }
3583

3584 /**
3585 * Returns a comparator that imposes the reverse ordering of the specified
3586 * comparator. If the specified comparator is {@code null}, this method is
3587 * equivalent to {@link #reverseOrder()} (in other words, it returns a
3588 * comparator that imposes the reverse of the natural ordering on
3589 * a collection of objects that implement the Comparable interface).
3590 *
3591 * <p>The returned comparator is serializable (assuming the specified
3592 * comparator is also serializable or {@code null}).
3593 *
3594 * @param cmp a comparator who' s ordering is to be reversed by the returned
3595 * comparator or {@code null}
3596 * @return A comparator that imposes the reverse ordering of the
3597 * specified comparator.
3598 * @since 1.5
3599 */
3600 public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3601 if (cmp == null)
3602 return reverseOrder();
3603

3604 if (cmp instanceof ReverseComparator2)
3605 return ((ReverseComparator2<T>)cmp).cmp;
3606

3607 return new ReverseComparator2<>(cmp);
3608 }
3609

3610 /**
3611 * @serial include
3612 */
3613 private static class ReverseComparator2<T> implements Comparator<T>,
3614 Serializable
3615 {
3616 private static final long serialVersionUID = 4374092139857L;
3617

3618 /**
3619 * The comparator specified in the static factory. This will never
3620 * be null, as the static factory returns a ReverseComparator
3621 * instance if its argument is null.
3622 *
3623 * @ serial
3624 */
3625 final Comparator<T> cmp;

80

3626

3627 ReverseComparator2(Comparator<T> cmp) {
3628 assert cmp != null;
3629 this.cmp = cmp;
3630 }
3631

3632 public int compare(T t1, T t2) {
3633 return cmp.compare(t2, t1);
3634 }
3635

3636 public boolean equals(Object o) {
3637 return (o == this) ||
3638 (o instanceof ReverseComparator2 &&
3639 cmp.equals(((ReverseComparator2)o).cmp));
3640 }
3641

3642 public int hashCode() {
3643 return cmp.hashCode() ˆ Integer.MIN_VALUE;
3644 }
3645 }
3646

3647 /**
3648 * Returns an enumeration over the specified collection. This provides
3649 * interoperability with legacy APIs that require an enumeration
3650 * as input.
3651 *
3652 * @param c the collection for which an enumeration is to be returned.
3653 * @return an enumeration over the specified collection.
3654 * @see Enumeration
3655 */
3656 public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3657 return new Enumeration<T>() {
3658 private final Iterator<T> i = c.iterator();
3659

3660 public boolean hasMoreElements() {
3661 return i.hasNext();
3662 }
3663

3664 public T nextElement() {
3665 return i.next();
3666 }
3667 };
3668 }
3669

3670 /**
3671 * Returns an array list containing the elements returned by the

81

3672 * specified enumeration in the order they are returned by the
3673 * enumeration. This method provides interoperability between
3674 * legacy APIs that return enumerations and new APIs that require
3675 * collections.
3676 *
3677 * @param e enumeration providing elements for the returned
3678 * array list
3679 * @return an array list containing the elements returned
3680 * by the specified enumeration.
3681 * @since 1.4
3682 * @see Enumeration
3683 * @see ArrayList
3684 */
3685 public static <T> ArrayList<T> list(Enumeration<T> e) {
3686 ArrayList<T> l = new ArrayList<>();
3687 while (e.hasMoreElements())
3688 l.add(e.nextElement());
3689 return l;
3690 }
3691

3692 /**
3693 * Returns true if the specified arguments are equal, or both null.
3694 */
3695 static boolean eq(Object o1, Object o2) {
3696 return o1==null ? o2==null : o1.equals(o2);
3697 }
3698

3699 /**
3700 * Returns the number of elements in the specified collection equal to the
3701 * specified object. More formally, returns the number of elements
3702 * <tt>e</tt> in the collection such that
3703 * <tt>(o == null ? e == null : o. equals(e)) </tt>.
3704 *
3705 * @param c the collection in which to determine the frequency
3706 * of <tt>o</tt>
3707 * @param o the object whose frequency is to be determined
3708 * @throws NullPointerException if <tt>c</tt> is null
3709 * @since 1.5
3710 */
3711 public static int frequency(Collection<?> c, Object o) {
3712 int result = 0;
3713 if (o == null) {
3714 for (Object e : c)
3715 if (e == null)
3716 result++;
3717 } else {

82

3718 for (Object e : c)
3719 if (o.equals(e))
3720 result++;
3721 }
3722 return result;
3723 }
3724

3725 /**
3726 * Returns {@code true} if the two specified collections have no
3727 * elements in common.
3728 *
3729 * <p>Care must be exercised if this method is used on collections that
3730 * do not comply with the general contract for {@code Collection}.
3731 * Implementations may elect to iterate over either collection and test
3732 * for containment in the other collection (or to perform any equivalent
3733 * computation). If either collection uses a nonstandard equality test
3734 * (as does a {@link SortedSet} whose ordering is not compatible with
3735 * equals, or the key set of an {@link IdentityHashMap}), both
3736 * collections must use the same nonstandard equality test, or the
3737 * result of this method is undefined.
3738 *
3739 * <p>Care must also be exercised when using collections that have
3740 * restrictions on the elements that they may contain. Collection
3741 * implementations are allowed to throw exceptions for any operation
3742 * involving elements they deem ineligible. For absolute safety the
3743 * specified collections should contain only elements which are
3744 * eligible elements for both collections.
3745 *
3746 * <p>Note that it is permissible to pass the same collection in both
3747 * parameters, in which case the method will return {@code true} if and
3748 * only if the collection is empty.
3749 *
3750 * @param c1 a collection
3751 * @param c2 a collection
3752 * @return {@code true} if the two specified collections have no
3753 * elements in common.
3754 * @throws NullPointerException if either collection is {@code null}.
3755 * @throws NullPointerException if one collection contains a {@code null}
3756 * element and {@code null} is not an eligible element for the other collection.
3757 * (optional)
3758 * @throws ClassCastException if one collection contains an element that is
3759 * of a type which is ineligible for the other collection.
3760 * (optional)
3761 * @since 1.5
3762 */
3763 public static boolean disjoint(Collection<?> c1, Collection<?> c2) {

83

3764 // The collection to be used for contains(). Preference is given to
3765 // the collection who's contains() has lower O() complexity.
3766 Collection<?> contains = c2;
3767 // The collection to be iterated. If the collections' contains() impl
3768 // are of different O() complexity, the collection with slower
3769 // contains() will be used for iteration. For collections who's
3770 // contains() are of the same complexity then best performance is
3771 // achieved by iterating the smaller collection.
3772 Collection<?> iterate = c1;
3773

3774 // Performance optimization cases. The heuristics:
3775 // 1. Generally iterate over c1.
3776 // 2. If c1 is a Set then iterate over c2.
3777 // 3. If either collection is empty then result is always true.
3778 // 4. Iterate over the smaller Collection.
3779 if (c1 instanceof Set) {
3780 // Use c1 for contains as a Set's contains() is expected to perform
3781 // better than O(N/2)
3782 iterate = c2;
3783 contains = c1;
3784 } else if (!(c2 instanceof Set)) {
3785 // Both are mere Collections. Iterate over smaller collection.
3786 // Example: If c1 contains 3 elements and c2 contains 50 elements and
3787 // assuming contains() requires ceiling(N/2) comparisons then
3788 // checking for all c1 elements in c2 would require 75 comparisons
3789 // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
3790 // 100 comparisons (50 * ceiling(3/2)).
3791 int c1size = c1.size();
3792 int c2size = c2.size();
3793 if (c1size == 0 || c2size == 0) {
3794 // At least one collection is empty. Nothing will match.
3795 return true;
3796 }
3797

3798 if (c1size > c2size) {
3799 iterate = c2;
3800 contains = c1;
3801 }
3802 }
3803

3804 for (Object e : iterate) {
3805 if (contains.contains(e)) {
3806 // Found a common element. Collections are not disjoint.
3807 return false;
3808 }
3809 }

84

3810

3811 // No common elements were found.
3812 return true;
3813 }
3814

3815 /**
3816 * Adds all of the specified elements to the specified collection.
3817 * Elements to be added may be specified individually or as an array.
3818 * The behavior of this convenience method is identical to that of
3819 * <tt>c. addAll(Arrays. asList(elements)) </tt>, but this method is likely
3820 * to run significantly faster under most implementations.
3821 *
3822 * <p>When elements are specified individually, this method provides a
3823 * convenient way to add a few elements to an existing collection:
3824 * <pre>
3825 * Collections. addAll(flavors, " Peaches ' n Plutonium", " Rocky Racoon");
3826 * </pre>
3827 *
3828 * @param c the collection into which <tt>elements</tt> are to be inserted
3829 * @param elements the elements to insert into <tt>c</tt>
3830 * @return <tt>true</tt> if the collection changed as a result of the call
3831 * @throws UnsupportedOperationException if <tt>c</tt> does not support
3832 * the <tt>add</tt> operation
3833 * @throws NullPointerException if <tt>elements</tt> contains one or more
3834 * null values and <tt>c</tt> does not permit null elements, or
3835 * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3836 * @throws IllegalArgumentException if some property of a value in
3837 * <tt>elements</tt> prevents it from being added to <tt>c</tt>
3838 * @see Collection#addAll(Collection)
3839 * @since 1.5
3840 */
3841 @SafeVarargs
3842 public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3843 boolean result = false;
3844 for (T element : elements)
3845 result |= c.add(element);
3846 return result;
3847 }
3848

3849 /**
3850 * Returns a set backed by the specified map. The resulting set displays
3851 * the same ordering, concurrency, and performance characteristics as the
3852 * backing map. In essence, this factory method provides a {@link Set}
3853 * implementation corresponding to any {@link Map} implementation. There
3854 * is no need to use this method on a {@link Map} implementation that
3855 * already has a corresponding {@link Set} implementation (such as {@ link

85

3856 * HashMap} or {@link TreeMap}).
3857 *
3858 * <p>Each method invocation on the set returned by this method results in
3859 * exactly one method invocation on the backing map or its <tt>keySet</tt>
3860 * view, with one exception. The <tt>addAll</tt> method is implemented
3861 * as a sequence of <tt>put</tt> invocations on the backing map.
3862 *
3863 * <p>The specified map must be empty at the time this method is invoked,
3864 * and should not be accessed directly after this method returns. These
3865 * conditions are ensured if the map is created empty, passed directly
3866 * to this method, and no reference to the map is retained, as illustrated
3867 * in the following code fragment:
3868 * <pre>
3869 * Set<Object> weakHashSet = Collections. newSetFromMap(
3870 * new WeakHashMap<Object, Boolean>());
3871 * </pre>
3872 *
3873 * @param map the backing map
3874 * @return the set backed by the map
3875 * @throws IllegalArgumentException if <tt>map</tt> is not empty
3876 * @since 1.6
3877 */
3878 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3879 return new SetFromMap<>(map);
3880 }
3881

3882 /**
3883 * @serial include
3884 */
3885 private static class SetFromMap<E> extends AbstractSet<E>
3886 implements Set<E>, Serializable
3887 {
3888 private final Map<E, Boolean> m; // The backing map
3889 private transient Set<E> s; // Its keySet
3890

3891 SetFromMap(Map<E, Boolean> map) {
3892 if (!map.isEmpty())
3893 throw new IllegalArgumentException("Map is non-empty");
3894 m = map;
3895 s = map.keySet();
3896 }
3897

3898 public void clear() { m.clear(); }
3899 public int size() { return m.size(); }
3900 public boolean isEmpty() { return m.isEmpty(); }
3901 public boolean contains(Object o) { return m.containsKey(o); }

86

3902 public boolean remove(Object o) { return m.remove(o) != null; }
3903 public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3904 public Iterator<E> iterator() { return s.iterator(); }
3905 public Object[] toArray() { return s.toArray(); }
3906 public <T> T[] toArray(T[] a) { return s.toArray(a); }
3907 public String toString() { return s.toString(); }
3908 public int hashCode() { return s.hashCode(); }
3909 public boolean equals(Object o) { return o == this || s.equals(o); }
3910 public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3911 public boolean removeAll(Collection<?> c) {return s.removeAll(c);}
3912 public boolean retainAll(Collection<?> c) {return s.retainAll(c);}
3913 // addAll is the only inherited implementation
3914

3915 private static final long serialVersionUID = 2454657854757543876L;
3916

3917 private void readObject(java.io.ObjectInputStream stream)
3918 throws IOException, ClassNotFoundException
3919 {
3920 stream.defaultReadObject();
3921 s = m.keySet();
3922 }
3923 }
3924

3925 /**
3926 * Returns a view of a {@link Deque} as a Last- in- first- out (Lifo)
3927 * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3928 * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3929 * view can be useful when you would like to use a method
3930 * requiring a <tt>Queue</tt> but you need Lifo ordering.
3931 *
3932 * <p>Each method invocation on the queue returned by this method
3933 * results in exactly one method invocation on the backing deque, with
3934 * one exception. The {@link Queue#addAll addAll} method is
3935 * implemented as a sequence of {@link Deque#addFirst addFirst}
3936 * invocations on the backing deque.
3937 *
3938 * @param deque the deque
3939 * @return the queue
3940 * @since 1.6
3941 */
3942 public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3943 return new AsLIFOQueue<>(deque);
3944 }
3945

3946 /**
3947 * @serial include

87

3948 */
3949 static class AsLIFOQueue<E> extends AbstractQueue<E>
3950 implements Queue<E>, Serializable {
3951 private static final long serialVersionUID = 1802017725587941708L;
3952 private final Deque<E> q;
3953 AsLIFOQueue(Deque<E> q) { this.q = q; }
3954 public boolean add(E e) { q.addFirst(e); return true; }
3955 public boolean offer(E e) { return q.offerFirst(e); }
3956 public E poll() { return q.pollFirst(); }
3957 public E remove() { return q.removeFirst(); }
3958 public E peek() { return q.peekFirst(); }
3959 public E element() { return q.getFirst(); }
3960 public void clear() { q.clear(); }
3961 public int size() { return q.size(); }
3962 public boolean isEmpty() { return q.isEmpty(); }
3963 public boolean contains(Object o) { return q.contains(o); }
3964 public boolean remove(Object o) { return q.remove(o); }
3965 public Iterator<E> iterator() { return q.iterator(); }
3966 public Object[] toArray() { return q.toArray(); }
3967 public <T> T[] toArray(T[] a) { return q.toArray(a); }
3968 public String toString() { return q.toString(); }
3969 public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3970 public boolean removeAll(Collection<?> c) {return q.removeAll(c);}
3971 public boolean retainAll(Collection<?> c) {return q.retainAll(c);}
3972 // We use inherited addAll; forwarding addAll would be wrong
3973 }
3974 }

88

	Código fonte em PDF
	Collections
	LinkedList

